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Abstract

Dynamic measurement techniques such as ac resistivity
and the Cahill 3-w [1] therma conductivity method induce
periodic currents in materials. In thermodectric materials the
coupling between eectrical and therma effects means the
normal mode excitations are generaly attenuated waves of
mixed electrical/thermal character. Since ZT is one measure
of the coupling between the electrical and thermal effectsiit is
perhaps not surprising that ZT is also a measure of the mixing.
This paper examines solutions to the coupled thermoelectric
diffusion problem and discusses some implications for
measurements.

Introduction
Diffusion of heat and charge in solids is ordinarily well
described by the approximate diffusion equations

i = d,Nh
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where h is the electrical potential (or more precisdly, the
electrochemical potential), T is the temperature, and d. and d,
are the electrical and thermal diffusivities. These diffusion
equations derive from conservation of energy and charge
considerations, with only afew simplifying assumptions.

In thermod ectric materials heat and electricity are coupled,
an effect neglected above. This paper seeks to identify when
the above expressions are adequate and when a more
complete treatment is required.

Firg, the coupled diffusion equations are derived and the
characteristic eigenvalue problem is solved to identify the
normal modes. Theresulting eigenvalues represent diffusivity
values for coupled temperature-potential diffusion and the
eigenvectors indicate the degree to which temperature and
potential diffusion are mixed in the normal modes. Next the
behavior of the normal mode diffusion constants is examined
as a function of coupling. And as an example, the coupled
boundary-value problem corresponding to the ‘flash’ method
of determining the thermal diffusivity is considered.

Thermoelectric Diffusion Equations
The firg task is to write the problem in terms of
measurable properties. Start with conservation of charge and

energy
k+Nx =0
. @
W +Ks0 =0

and definitions of the entropy flux (§) and time rate of

change of the entropy density ( é)
TS=U-hi
T$=U - het

Combining (2) and (3) and defining an entropy source term, s,
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allows connection to the ordinary transport coefficients,
assuming the currents are linearly proportional to the
gradients of the potentials, by

i =s (E-aNT)
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Using a more compact matrix notation.
& O @ E O
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with thetransport matrix L given by
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Herei isthe electric current density, E isthe dectric fidd, NT
is the temperature gradient, s is the electrical conductivity, a
is the Seebeck coefficient and | is the thermal conductivity

(measured under the condition i_=O). g is a convenient
measure of the relative strength of the thermodlectric effects
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where ZT isthe dimensionless thermod ectric figure of merit.

Within the same linear response regime, the time variations
as can be written

% = CH+C,¥}
§=c,i+C,¥t

which is conveniently summarized in matrix form as

ﬁo_cﬁo
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with the capacity matrix, C, given by various thermodynamic
derivatives.

The symmetry of C is a consegquence of the second law of
thermodynamics and the off-diagonal elements (Cy, and Cy))
are exactly equal. C,,-Cy,?/Cy; is essentially the heat capacity.
Cy; isrelated to the carrier concentration although in generad it
isadlightly more complex quantity. C,, represents the change

g, °1+
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in entropy (or heat) when the charge
3.0

is changed isothermally and C,,

represents the change in charge with

temperature, keeping the

electrochemical potential constant.

In principle each coefficient can be

both calculated and measured,

although the cross coefficients a, d,

rarely are. —
A'g can be defined for the ¢~ Fe @.

matrix as well
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which again is a convenient measure (1,2)
of the relative magnitude of the 0.5 — 1
cross effects. 1 2 _ ]d0c 3 4

Combining  conservation  of
energy and charge with linear
response considerations yields the
coupled diffusion eguations

(12).

For the remainder of this paper the entropy source term will
be neglected and the C and L matrices will be treated as
constants, independent of chemical potential and temperature.
The non-linearities so neglected, however, can in principle
lead to a variety of interesting behavior.

The coupled diffusion problem may be solved using the
usual methods. Solutions which oscillate in space and decay
with timelike

éru_é,u
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or which oscillate in time and decay exponentiadly in space
like

i U iwm+(- 1)(
eTu eTLF

are possible.  The firg case is often useful for initial value
problems, where for example the potential and temperature
distribution are known at some initial time and one wishes to
know the future time evolution of these functions. This case
will be examined beow. The second case occurs in methods
where the potential (or temperature) is forced to oscillate at a
fixed frequency, such asin an ac resistivity measurement (or
an Angstrom [2] or Cahill 3-w [1] thermal conductivity
measurement).
Solution  of
eigenvalues

(13)

the characteristic equation yields the
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Figure 1: Actual diffusivity values a. and a. as functions of the diffusion constants d,
and dy neglecting coupling and the magnitude of thermoelectric coupling (o, 4).
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are the usual eectrical and thermal diffusivity values for the
respective uncoupled diffusion problems.

Thus the eigenvalues depend on the two uncoupled
diffusivity values and on the coupling between electrical and
therma effects represented by the two gvalues.

The two eigenvectors are given by

ho:r — (atClZ- le)

To:r (a ¢C11 - Lll)
which again illustrates that in the absence of thermodectric
coupling (Cy2=L4,=0), the solutions uncouple to one purely
electrical diffusion solution and another purely temperature
diffusion solution.

(16),



Behavior of the eigenvalues

The two eigenvalues a. and a. represent two diffusion
constants which appear in two independent solutions of the
form given by Egs. 12 or 13. In a great many materials the
electrical diffusivity (de) is greater than the thermal diffusivity
(dg), sometimes very much grester, so it is natura to identify
the larger eigenvalue a, as an ‘dectric-like diffusion
coefficient and the smaller eigenvalue, a., as a 'heat-like
diffusion coefficient. It isimportant to note, however, that so
long as thermodectric coupling is not zero each solution
involves time and spatia variations of both the
electrochemical potential and the temperature. Further, when
d. < dy (which is true for some poor mobility materials) the
identification of ‘electric-liké or ‘heat-like can become
ambiguous and theroles of a. and a. can reverse.

The constants d. and d represent the diffusivity values
expected in the absence of thermodectric effects, but a. and
a. are the diffusivity values which one observes in dynamic
laboratory measurements. Fig. 1 illustrates how the observed
diffusivity values (a, and a.) depend on d. and d, and on the
degree of coupling.

Fig. 1 shows the thermoeectric coupling can significantly
modify the actual diffusivity values compared to the values
expected in the absence of coupling. The Situation is
particularly severe when both types of coupling are large (i.e.
when g and g>>1). For most materials, however,
thermodectric coupling is small (g and g only dlightly
greater than 1) and the actual diffusivity values are little
modified from the uncoupled values d. and dj.

For de>>d, the first order corrections to the diffusivity is
given by
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a = dedq/a+

Eq. 17 illustrates that the corrections depend on the departure
from no coupling (i.e. g-1 and g-1), a delicate balance
between the two types of thermoeectric coupling (g vs. @),
and on the relative magnitudes of the two uncoupled
diffusivity values (de and dg).

Thermal Flash Diffusivity

The flash technique (Fig. 2) developed by Parker et d [3]
for determining therma diffusivity is relatively simple, fast
and insendtive to hest loss.

v

Figure 2: 'Hash' methods determine thermal
diffusivity on thin, disk-shaped samples from the
temperature vs. time response of the front face.

The boundary conditions for the flash method are that no
heat or charge enters or leaves the sample, except during a
brief period (short compared with any characteristic internal
diffusion time) when hesat is deposited on the rear face of the
sample. The mathematical problem including the effects of
thermod ectric coupling is solved using techniques essentially

identical to a heat flow problem discussed by Carslaw and
Jaeger [4], except that here two independent solutions are
required to conserve charge. The time dependence of the
electrochemical potential and temperature of back face of the
sample are given by

h=T,{AB.flat/L?)+ AB fla t/L?}
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Q, isthetotal heat deposited in the sample at temperature T,
These solutions ensure that no electrical charge enters or
leaves the surfaces at any time, even during the heat flash
itsalf.

The time dependence of the temperature of the back face is
given by the sum of two terms. 1) an 'dectric-like term with
amplitude A propagating with a characteristic diffusion time
governed by a.and 2) a 'heat-like' term with amplitude A.
propagating with a characteristic diffusion time governed by
a.. Hg. 3 illustrates how the amplitude of more slowly
propagating 'hest-like' portion of the temperature response
varies with relative magnitude of the two uncoupled
diffusivity values (d. and d;) and the degree thermoelectric
coupling (represented by g- and g ).

Again, thermodectric coupling significantly modifies the
results compared to the values expected in the absence of
coupling. When both types of coupling arelarge (i.e. when g-
and g >>1) the 'heat-like' contribution can actually become a
small faction of total temperature response. For most
materias, however, thermoeectric coupling is small (g- and
g only dightly greater than 1) and the 'heat-like' component
dominates the temperature response, as expected

When correctionsare large

From the above discussion it appears that no specid
precautions are required when interpreting diffusivity
measurements when both types of thermoelectric coupling are
small (i.e, when g- and g are only slightly greater than 1)
When only one type of coupling is grong (i.e. g=>>1 or g
>>1, but not both) the actual diffusivity values will be given
by the uncoupled values (d. or dy) except when these are
similar in magnitude. In other cases, the full roots given by
Eq. 14 arerequired.
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Figure 3: Amplitude of the 'heat-like' response as a function of the diffusion constants

neglecting coupling (d. and d;) and the magnitude of the coupling (g and g ).
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precision and accuracy, SO a
simple measurement of times
can yidd important
experimental information.

In the case of thermoelectric
coupling,  four  materials
parameters (two diffusivities
and two coupling parameters)
determine the time dependence
of the temperature of the
backface temperature and more
careful anaysis is required to
extract the material properties.
Indeed, when other corrections
such as heat loss and finite
duration of the flash are
considered (as has been done
for the uncoupled problem [3]),
extraction of reliable values for
materials properites becomes
problematic.

Conclusion

Characterization of
eectrica and thermal
properties of materials using

T dynamic methods (i.e. using time dependent
T/T¥ external perturbations) is more complex in
10T Total ——— materials with strong thermel ectric effects because
. l the response generaly exhibits both 'dectric-like
0.8f heat-like - and ‘heat-like  components, each  with
| i characteristic  diffussion  constants modified
0.6 compared to the uncoupled diffusion constants. In
0.4} i most materials thermoedectric coupling will be
) dectric-like | negligible but it would be of interest to confirm
02t i the effects described in this paper by analysis of
high-precision diffusivity experiments on, for
0.0 O e —— example, metallic thermocouple .materials where
0.001 0.010 i 0.100  the coupling effects may be within experimental
Time (s) resolution.
Figure 4: Temperature vs. time response for a flash diffusivity
measurement on ahypothetical metal 1 mm thick with g-~2 and g ~2.
Fig. 4 illustrates one kind of error which can occur in
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