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1. INTRODUCTION 

This portion of the course describes the physical origins of thermoelectric effects 
in solids.  Key concepts and physical principles governing thermoelectric 
phenomena are discussed and concepts, rather than equations, are emphasized.  
The intent is to present the vocabulary in a straightforward form so that people from 
diverse backgrounds, from materials scientists to systems engineers, can 
communicate with a common language. 

A full appreciation of the science of thermoelectricity requires some 
understanding of a great many disciplines.  Equilibrium thermodynamics, non -
equilibrium thermodynamics, quantum mechanics, statistical mechanics, transport 
theory, crystallography and solid state physics are all needed to understand the 
physics of thermoelectric phenomena.  Clearly, a single lecture cannot hope to cover 
all of the important material.  Also, some people will require only a conceptual 
overview, while others may need a much more detailed discussion.  Therefore, this 
lecture will provide an overview of some of the main concepts which, combined with 
the suggested reading list, may provide a reasonable basis for a self -study course 
suitable for even a relatively advanced understanding. 

The first lecture in this course provided an introduction to thermoelectricity and 
the basic ideas are familiar to any specialist in the field.  Still, some discussion of the 
commonly used terms is useful to provide a common language  for further 
discussions.  First, the term "thermoelectric" itself implies that both thermal and 
electrical phenomena are involved.  While the term can be used in a more general 
context, for the purposes of this lecture it refers specifically to effects wh ich occur in 
solids. 
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2. THERMOELECTRIC MATERIAL 

The term "Thermoelectric Material" is usually understood to refer to a material 
which exhibits substantial thermoelectric effects.  Neglecting superconductors for the 
moment, every material exhibits some thermoelectric effects.  Although the best 
electrical conductors are perhaps 20 orders of magnitude better than the best 
electrical insulators at conducting electricity, all materials conduct to some extent.  
Similarly, all materials conduct heat to some extent.  It should be no surprise, 
therefore, to find that all materials also generate a thermal EMF.  

3. PHENOMENOLOGY 

In order to really understand the origins of these effects, however, a certain 
amount of background is required.  The following sections attempt to outline the 
essential points of thermoelectric phenomena, starting from the most fundamental 
concepts of heat and charge and finishing with much more advanced topics such as 
the Boltzmann equation and scattering mechanisms.  The emphasis, however, is  on 
the concepts involved and relatively few equations are employed.  

3.1. Heat, Temperature and Thermal Equilibrium 
The concepts of heat, temperature and thermal equilibrium are among the most 

fundamental and important concepts in science.  Two isolated ob jects are said to be 
in thermal equilibrium if nothing happens when they are brought into contact with 
each other.  It is an experimental fact that any other object which is shown to be in 
thermal equilibrium with one of the first two objects will also be in thermal equilibrium 
with the other.  This intuitively appealing result is the so-called Zeroth Law of 
Thermodynamics and is the basis for the establishment of a temperature scale.  
Objects in thermal equilibrium are said to be at the same temperature.  

Isolated objects at different temperatures, if brought into contact with each other, 
will exchange energy in an attempt to establish thermal equilibrium.  This too is an 
experimental fact and we call the energy exchanged heat.  Any work performed 
during this process is equal to the difference between the heat lost by one object and 
gained by the other object.  This is the First Law of Thermodynamics, i.e. energy is 
always conserved. 

3.2. Charge, Potential and Electrical Equilibrium 
The concepts of electrical charge and electrical potential are also very 

fundamental.  Material objects are composed of positive and negative charges.  
Opposite charges attract and like charges repel each other.  These are experimental 
facts.  Material objects may be said to be in electrical equilibrium if there is no 
exchange of charge when they are brought into contact with each other.  Such 
objects are said to have the same electrical potential. 

Objects with different electrical potentials, if brought into contact with each other , 
will exchange charge in an attempt to establish electrical equilibrium.  For this 
reason, most bulk materials have either zero or only a very small net electrical 



Vining - 3 

 

charge.  The unit for electrical charge is the Coulomb and the unit for electrical 
potential is the Volt.  As a consequence of the exchange of charge there is also an 
exchange energy which we call work.  Exchange of one Coulomb of electrical charge 
through a potential of one Volt results in the exchange of one Joule of work.  

3.3. Currents, Forces and Equal Treatment 
An electrical current is the quantity of electrical charges which passes through a 

boundary (either a real or an imaginary boundary) each second.  An electrical force 
is related to the change in electrical potential per unit of distan ce, i.e. the electrical 
gradient. 

Similarly, a heat current is the quantity of heat which passes through a boundary 
each second.  And by analogy a "thermal force" is related to the change in 
temperature per unit distance, i.e. the temperature gradient.  

The thermal and electrical properties have been described above in a manner 
intended to emphasize the importance of treating both phenomena on an equal 
footing.  Each thermal property has an analogous electrical property, as illustrated in 
Table 1. 

Table 1  Correspondence Between Thermal and Electrical Quantities. 

 Thermal Electrical Type 
Quantity Heat Charge Reversible 
Potential Temperature Potential Reversible 
Current Type Heat Current Electrical Current Irreversible 
Driving Force Potential Difference Temperature Difference Irreversible 

 

3.4. Irreversible versus Reversible Thermodynamics 
The term "dynamics" often implies some type of motion or change with time.  In 

the word "thermodynamics" the term refers to changes in properties with temperature 
(or heat) and in fact any changes in time are assumed to be negligible.  If an object 
changes from one thermal (and electrical) equilibrium state to another, 
thermodynamic principles can be used to study the change in the object's properties 
from before the change to after. 

But thermodynamics can say nothing about the rate of change.  If two objects are 
in contact, thermodynamics tells us that heat will leave the hotter object and enter 
the colder one, but it cannot tell us how fast this process will occur.  Proc esses which 
occur at a non-zero rate between two objects not in thermal (or electrical) equilibrium 
are beyond the scope of thermodynamics alone.  Such processes are the subject of 
irreversible thermodynamics (also called non-equilibrium thermodynamics). 

When electrical potential differences or temperature differences become large 
enough to cause significant electrical currents or heat currents, factors beyond 
ordinary thermodynamics must be considered.  Since thermoelectric effects 
inherently involve significant forces and/or currents, all thermoelectric effects are 
beyond thermodynamics. 
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3.5. Ohm's Law and Linear Response 
Ohm's law says that the electrical current will be proportional to the electrical 

force and the proportionality coefficient is called the electrical conductivity.  Ohm's 
law is just one example of a " linear response."  The term implies only that one 
quantity changes linearly "in response to" a change of another quantity.  For virtually 
all thermoelectric problems of interest, linear response is an excellent approximation 
and each of the thermoelectric properties may be defined by simple equations similar 
to Ohm's Law, as shown in Table 2. 

Table 2  Definitions of Transport Coefficients of Interest in Thermoelectricity. 

Thermoelectric Property Definition Under Condition Type 
Electrical Conductivity i E= σ  ∇ =T 0  Direct 
Thermal Conductivity Q T= − ∇λ  i = 0 Direct 
Seebeck Coefficient E T= ∇α  i = 0 Cross 
Peltier Coefficient Q i= Π  ∇ =T 0  Cross 

 
The first relation connects the electrical current to the electrical force while the 

second relation connects the thermal current to the thermal force.  The electrical and 
thermal conductivities are therefore called direct effects since they connect currents 
with the related force.  The electrical conductivity indicates how well a material 
conducts electricity and the thermal conductivity indicates how well a material 
conducts heat. 

The Seebeck and Peltier coefficients, however, are called cross effects since 
they connect an electrical response to a thermal force or a thermal current to an 
electrical current.  The cross effects are the basis for utilizing thermoelectric 
materials for energy conversion applications.  The Seebeck coefficient indicates how 
large a voltage a material generates in a temperature gradient and the Peltier 
coefficient indicates how much heat passes through a material for a given current.  

3.6. Equal Treatment Revisited 
The definitions of the thermoelectric coefficients, given above, are historical and 

were defined for experimental convenience.  Zero electrical current or zero 
temperature gradient are relatively easy to achieve experimentally.  Linear response 
coefficients could also be defined under conditions of zero heat current or zero 
electrical gradient, but such conditions are much more difficult to control 
experimentally. 

In order to include the cross effects into the currents under arbitrary gradients, 
we need to add the effects together: 

i E T= − ∇σ α( ) , and (1) 

Q i T= − ∇Π λ  (2) 

These expressions are perfectly correct and often convenient to use, but they 
are not symmetrical and in order to treat everything equally it may be preferred to re -
write the expressions as: 
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i E T= + −∇σ σα( ) , and (3) 

Q E T= + −∇σ λΠ ( )  (4) 

In this form, the expressions represent a generalization of Ohm's Law.  In 
general a force (such as E or -∇T) can generate a current (such as i or Q). 

Lord Kelvin first suggested that the Peltier coefficient and the Seebeck 
coefficient had a definite relationship:  Π=αT.  While Kelvin's relationship is correct, 
his derivation was incorrect since it was based on purely thermodynamic arguments.  
Not until 1931 did Onsager derive this relationship (and indeed a wide variety of 
other cross-effect relationships) correctly, using a technique based on thermal 
fluctuations.  This result shows that the Seebeck and Peltier effects are not really 
independent effects, but more accurately are both manifestations of the same thing.  
This unification is comparable to the development of Maxwell's equations, which 
show that electricity and magnetism are really just distinct manifestations of a single 
electromagnetism. 

3.7. A Note on the Thompson Coefficient 
In addition to the Seebeck and Peltier effects, it is sometimes asserted that there 

is a third effect, called the Thompson effect.  This effect asserts that when an 
electrical current flows through a material which is also subject to a temperature 
gradient that heat is generated at a rate proportional to the electrical current and 
also proportional to the temperature gradient, thus  

 ( )Q i TThompson = −∇τ  (5) 

where τ is the Thompson coefficient. 
The total rate of heat generation within the material is then given by the sum of 

three terms:  1) i2ρ , the Joule heating, 2) ( )−∇ −∇[ ]λ T , the rate that heat is 
conducted into the material, and 3) τi T( )−∇ , the Thompson heat: 

 [ ( )] ( )Q i T i TTotal = − ∇ −∇ + −∇2ρ λ τ  (6) 

This, in fact, is just the usual heat balance equation.  Thompson (who later was 
named Lord Kelvin) was able to show that the coefficient τ was related to the 
temperature dependence of the Seebeck coefficient: 

τ
α

= T d
dT

. (7) 

Basically, the Thompson effect represents the heat generated (or absorbed) due 
to the fact that the Peltier heat changes with temperature.  This result can be derived 
from the usual thermoelectric expressions (1) and (2) given above. 

In experimental analysis and device design, some care must be exercised to 
account for the Thompson effect.  A consistent approach must be taken.  If the 
analysis ignores the temperature dependence of the Seebeck coefficient, an the 
Thompson term may need to be added explicitly to get the correct heat balance.  On 
the other hand, modern analysis techniques such as finite -element thermal models 
can often account explicitly for the temperature dependence of the transport 
coefficients and in this case explicit addition of a Thompson term could cause a 
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double-counting effect in the heat balance, since the entire effect is already 
contained in the basic equations. 

In reality there is only one thermo-electric cross effect and the Seebeck, Peltier 
and Thompson effects are merely manifestations of the same basic phenomena.  

4. THERMOELECTRIC THEORY OF SOLIDS 

Up to this point, we have only described the phenomena of thermoelectric 
effects.  Virtually all materials exhibit currents which respond linea rly to applied 
forces.  The only real question which varies widely from material to material is the 
particular values of the thermoelectric coefficients σ, λ and α.  A notable exception is 
superconducting materials which may not be described in this way at all.  For 
superconducting materials, electrical currents may flow with no driving force at all.  
Ohm's law fails entirely in this case and superconducting materials are therefore 
entirely beyond the scope of the present discussion.  

But what is it about a material which determines the transport coefficients?  Why 
are some materials good conductors and others bad?  Under what conditions is the 
Seebeck or thermal conductivity large or small? 

To address these questions we need a theory of solids which can connect the 
structure and makeup of solids to the thermoelectric properties.  This is an ambitious 
task, so in order to be definite most of the remaining discussion will actually apply to 
a kind of idealized material and many approximations will be assumed.  
Nevertheless, the concepts depicted are generally well established and the overall 
picture is useful as a starting point, even if it does not tell the whole story.  

A solid material is made up of a collection of atoms.  The ideal theory would be 
able to take as input the geometrical arrangement and type of atoms and predict all 
the important properties.  In principle, modern solid state theory is capable of doing 
exactly this and in a few special cases these so-called "first-principle" calculations 
are remarkably accurate.  For most real materials of interest, however, the 
calculations are far too complex to perform reliably, even though all the fundamental 
principles are well known.  An analogy can be made to complex games such as 
chess or go or shogi, where all the fundamental rules are well known but completely 
accurate play is seldom achieved. 

5. CRYSTALS 

We will consider crystalline materials with a definite arrangement of atoms.  
Figure 1 shows a two of the simpler crystal structures.  Each atom has a definite 
geometrical relationship to all of the atoms around it.  

It is traditional to make a distinction between the properties of the lattice and the 
properties of the electrons.  The lattice refers to the positions of the atoms 
themselves.  The atoms are not stationary, but the are considered to move only very 



Vining - 7 

 

slightly compared to the distances between the atoms.  This is to say that they 
vibrate about their average position, but the do not move throughout the crystal.  We 
will neglect here any larger motions which atoms might make in real materials.  

Most of the electrons are considered to be localized, always remaining 
associated with the same particular atom.  Localized electrons do not car ry any 
current, even when a force is applied, and may be considered to be part of the 
lattice.  Some of the electrons, however, are essentially "free" and will move 
throughout the solid.  It is these "free" electrons which determine the ability of a 
material to carry an electrical current. 

 

  
(a) (b) 

 

Fig. 1  Diamond (a) and Sodium Chloride (b) Crystal Structures.  Si and Ge form with 
the Diamond Crystal Structure, in which Case all the Atoms are Identical.  PbTe and 
PbSe Occur in the Sodium Chloride Crystal Structure. 

It is customary and usually convenient to speak of the properties of the lattice 
and the properties of the electrons (taken to mean the free electrons), but this 
division of properties is somewhat artificial.  Sometimes it is important to remember 
that the lattice influences the behavior of the electrons and the electrons influence 
the behavior of the lattice.  At the minimum, it is important to treat both systems on 
an equal footing for a reliable description of thermoelectric effects.  

6. THE IDEAL MATERIAL IN EQUILIBRIUM 

This section will describe an ideal crystal in thermal equilibrium.  First the lattice 
and then the charge carriers will be discussed.  Keep in mind that this  is just the 
beginning.  At this point there are no net forces and no net currents in the solid.  

The next section will generalize these concepts to the case when there are net 
forces and net currents in the solid. 
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6.1. The Lattice and Phonons 
6.1.1. Main Features 

Many of the main features of a lattice may be illustrated by a simple mass and 
spring model where the atoms are represented as point masses and the bonding 
between the atoms is represented by very small springs:  

Undisturbed Mass and Spring Model

One Wavelength

Transverse Phonon

Longitudinal Phonon
(Displacements have been
greatly exagerated for clarity)

 

Fig. 2  Mass and Spring Model for a One-Dimensional Crystal of Ions (Represented 
by the Masses) Held in Place by Bonds (Represented by the Springs).  Two Possible 
Types of Disturbances from Equilibrium are Represented by the Transverse and 
Longitudinal Phonons Shown. 

In the undisturbed lattice (at top in Figure 2) the atoms would be regularly 
spaced apart with a distance corresponding to a unit cell repeat distance.  In fact the 
atoms will vibrate about their equilibrium positions due to thermal agitation.  T his 
motion is not entirely random, however, since the movement of one atom stretches or 
compresses the springs connecting it to neighboring atoms.  

Vibrations, even if initiated at a single atom, will propagate throughout the 
crystal.  Rather than describing the vibrations of the each atom individually, it has 
been found to be both more convenient and more accurate to speak about regular, 
sinusoidal disturbances of entire groups of atoms, as suggested by the middle and 
lower portions of Figure 2.  Such a sinusoidal disturbance is called a phonon.  The 
word phonon means "particle of sound" and is used because sound is precisely an 
elastic wave of compression and extension which propagates through a solid.  

A solid with only a single phonon in it, therefore, wou ld exhibit a particularly 
regular pattern of atomic displacements such as shown in the lower two portions of 
Figure 2.  It can be shown, using mathematical techniques almost identical to 
ordinary Fourier analysis, that any configuration of atomic displacements - no matter 
how complex - can be accurately represented by an appropriate summation of many 
sinusoidal disturbances.  Since a collection of phonons can represent any possible 
configuration of disturbances from equilibrium, and since individual phonons  
represent particularly simple motions which actually do occur in solids, the phonon 
description has become the most common tool for describing the properties of solids.  
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There are several terms used to describe a phonon.  First, each phonon has a 
characteristic wavelength, as shown in Figure 2.  The phonon wavelength may be 
very long, but a wavelength less than the distance between the atoms does not make 
sense.  A phonon represents a disturbance in the positions of the atoms, and there 
can be no disturbance where there are no atoms.  So, the minimum wavelength ( λ) 
allowed is one interatomic distance (a). 

Now, quantum mechanics tells us that a wave will carry a momentum given by h/
λ, where h is Plank's constant.  This principle was first described by de Broglie and it 
is a very powerful concept indeed.  Note that this momentum is not the same as the 
phonon velocity.  It is common to speak of phonon wavenumber defined by 2π/λ.  
Since there is a minimum allowed wavelength, there is also a maximum allowed 
momentum (h/a) and a maximum allowed wavenumber (2π/a).  Except for a factor 
related to Plank's constant, the momentum and wavenumber can be used 
interchangeably. 

A crystal with a phonon in it must have a greater energy than a crystal without 
any phonons.  Bonds are being stretched and atoms moved, so there is both kinetic 
and potential energy associated with each phonon.  The energy associated with a 
single phonon is typically very small, representing only a fraction of an electron volt.  
As suggested in Figure 2, however, there may be several different types of atomic 
motion allowed for a given wavelength and in general each type of allowed motion 
will have a different amount of energy associated with it.  

Each type of phonon travels through the crystal at a velocity characteristic of that 
type of phonon.  "Velocity" refers to the speed of a crest of one of the waves shown 
in Figure 2.  There may be several types of phonon with the same wavelength, each 
of which have different energies and different speeds.  Indeed, some phonons hardly 
move at all and just represent a kind of standing wave.  

There are two major issues to be determined regarding phonons:   1) what types 
of phonons are actually allowed in crystals (only two types are shown in Figure 2) 
and 2) which ones are actually present under the conditions of interest?  If both 
questions are known, then one should be able to predict a wide variety of p roperties 
of the lattice. 

6.1.2. Phonon Dispersion Relation 
The first question (what phonons are allowed?) is a mechanics question.  If the 

single-chain of masses and atoms shown in Figure 2 is not good enough, you simply 
work up a more accurate representation of the geometry using the full crystal 
structure (such as shown in Figure 1).  Since the masses and distances are very 
small, quantum mechanics is required to get reasonable answers.  It can be 
particularly difficult to accurately calculate the strength of the springs (i.e. the 
chemical bonds), but this has been done for many crystals.  Calculations become 
more difficult as the crystal structure becomes complex.  

The energies of the allowed phonons vary with the direction the phonon moves 
through the crystal and the momentum (or wavelength) of the phonon.  Fortunately, 
individual phonons may be studied experimentally using neutron scattering 
techniques.  Experimental energy/momentum relationships, called the phonon 
dispersion relation, can then be compared to the calculated relationships, such as 
shown for silicon in Figure 3.  Thus, the allowed phonons may be determined rather 
precisely. 
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Sometimes the full dispersion relation must be used, but very often a much 
simpler description is sufficient.  The two most common models for how phonons 
move are the Debye Model and the Einstein Model, represented in Figure 4.  In the 
Debye model phonons all have the same speed and have an energy which is directly 
proportional to the wavenumber (i.e. inversely proportional to the wavelength).  The 
speed of these phonons is just the speed of sound through the solid.  The term 
acoustic phonon is associated with this type of phonon to remind you that the 
acoustic (and elastic) properties of solids are associated with this type of vibration. 

Fig. 3  Phonon Dispersion Relation (Energy as a Function of Momentum) for Silicon.  
Symbols are Experimental and Lines are Calculated.  Note the Variation with 
Direction and that there are Several Different Branches (After Dolling1). 
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Fig. 4  Idealized Phonon Dispersion Relations for the Einstein and Debye Models of 
Lattice Vibrations. 

A second model is the Einstein model, in which the phonons are considered to 
be standing still, which is to say that the crest of the vibration wave does not move 
through the crystal, but only oscillates back and forth.  All phonons, in this ideal 
model, have exactly the same energy.  Such a phonon is also called an optical 
phonon because in ionic crystals the standing wave vibrations of charged ions 
represents an oscillating electrical dipole which can interact with electromagnetic 
radiation.  Many optical properties of solids are determined by interaction between 
light and these "optical phonons." 

The phonons actually allowed in a real crystal (such as shown in Figure 3) seem 
to bear little resemblance to the idealized models shown in Figure 4.  Nevertheless, 
careful use of the idealized models can often capture the essential features and 
provide surprisingly reliable estimates of many physical properties.  

6.1.3. Phonon Distribution:  Equilibrium 
The second question of interest was:  which phonons are actually present?  At 

low temperatures, the atoms clearly vibrate very little corresponding to very few 
phonons.  Near the melting point of the solid, the atoms are vibrating very severely 
corresponding to very large numbers of all kinds of phonons.  Fortunately, the 
number of each type of phonon present in equilibrium at a given temperature may be 
calculated using the well known Bose-Einstein distribution function.  This is an 
application of statistical mechanics.  Statistical mechanics provides a systematic 
framework for describing the properties of a system consisting of a large number of 
components.  Little more is required in principle than a knowledge of wh ich energy 
levels are allowed (i.e. the dispersion relation).  While the calculations can become 
quite complex, part of the power of statistical mechanics is that the techniques can 
handle both equilibrium and non-equilibrium conditions.  Under non-equilibrium 
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conditions there is still a distribution function, but it is not quite the Bose -Einstein 
function. 

1000 K
800 K

600 K
400 K

200 K

Typical Maximum
Phonon Energy

 
Fig. 5  The Number of Phonons of a Particular Type and Particular Energy is Given, 
in Equilibrium, by the Bose-Einstein Distribution Function as Shown for Several 
Temperatures. 

Do not be concerned that the distribution function calls for less than one phonon 
under many conditions.  What, does it mean to have less than one phonon?  This is 
a part of statistical mechanics, where properties are calculated as averages over 
large numbers of particles and long periods of time.  Imagine that sometimes a 
phonon is present and sometimes it is not present, which is to say that phonons are 
constantly being created and destroyed. 

6.1.4. Statistical Mechanics: Calculating Properties 
Now that we know which phonons are allowed (given by the dispersion relation) 

and which ones are expected to be present (given by the distribution function) we are 
in a position to calculate many properties of the crystal.  The general procedure can 
become mathematically quite complex, but conceptually it is very simple and isi 
summarized in Table 3.  First determine how much each type of phonon contributes 
to the property of interest, then multiply by the di stribution function to account for 
how many of each type of phonon are expected to be present and finally add up the 
contribution counting every type and wavelength of phonon allowed.  

Table 3  Procedure for Calculating the Total Energy Associated with Phonons. 

Total Property  Sum over allowed types of 
phonons, i 

Sum over allowed 
wavenumber, k 

Contribution of 
each phonon 

x Distribution 
Function 
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= 

i=1⇒Longitudinal Acoustic 
i=2⇒Transverse Acoustic #1 
i=3⇒Transverse Acoustic #2 
i=4⇒Optical #1 
i=5⇒Optical #2 
i=6⇒Etc. 

 
 

k≥0 
k≤2π/a 

 
 

ε(i,k) 

 
 
x 

 
 

N(i,k) 

 
Properties other than the energy (such as heat current) may be evaluated using 

the same procedure and a variety of notations have been developed to make it 
easier to write down the expressions.  Usually the summation over waven umbers is 
treated as an integral and in three dimensions the wavenumber becomes a 
wavevector, indicating not only the wavelength of the phonon but also the direction it 
is traveling through the crystal.  Evaluation of such expressions (which we will not 
discuss here) can be very tedious, but writing them down is simple:  

E i k d k
allowed kphonon i

=








∫∑ ε( , )
,


 

  

3 . (8) 

6.2. Charge Carriers 
Up to this point we have described only a crystal with no charge carriers.  Recall 

that an isolated atom has two types of electrons: an inner co re of electrons 
(corresponding to the number of electrons in the next -lighter noble gas) which are 
very tightly bound to the atom and an outer shell of less tightly bound electrons 
called the valence shell.  If, in a solid, all of the outer shell electrons  are exactly 
consumed in bonding, then there are no charge carriers at all.  Such a material is 
called an electrical insulator and ideally has no electrical conductivity at all.  
Thermoelectric materials must have some charge carriers in order to exhibit 
electrical conduction phenomena. 

6.2.1. The Origin of Charge Carriers 
Charge carriers can result from a variety of mechanisms.  In a classical metal, 

one or more of the outer shell electrons are not localized in bonds between specific 
atoms, but are more or less free to move throughout the crystal.  The alkalis (Na, K) 
and alkali earths (Li, Mg) are classic examples of simple metals.  

Of more interest for thermoelectric energy conversion is the creation of charge 
carriers in insulators.  Since insulators ideally have no charge carriers, any defects 
that are present can be said to be due to defects.   Figure 6 illustrates the production 
of carriers by substitutional defects.  When a host atom is replaced by an atom with 
more valence electrons than the host has, the extra electron is not needed for 
bonding and enters the next higher available energy state.  There is some attraction 
between the negative electron and the positively charged donor atom left behind, but 
often the attraction is very weak and the electron is free to move throughout the 
crystal, much like the electrons in a metal. 
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Fig. 6.  Lattice Showing Atomic Substitutions by a Donor, Creating a Free Electron, 
and by an Acceptor, Creating a Free Hole. 

When a host atom is replaced by an atom with fewer valence electrons than the 
host has, a bond is left one short of the ideal.  This "shortage" is called a hole and 
there is some attraction between the hole and the negatively charged ion left behind, 
which is called an acceptor.  The hole is literally the absence of an electron in one of 
the bonds and often the attraction is very weak, allowing the hole to move freely from 
bond to bond throughout the crystal.  

Even in an otherwise perfect crystal, where all the bonds are exa ctly filled, 
electrons and holes are created thermally.  A few electrons in the bonding states will 
occasionally acquire enough energy to leave the bonding state (leaving behind a 
hole) and enter one of the anti -bonding states (creating a free electron).  These 
electron-hole pairs are constantly being created and destroyed.  

There are several other mechanisms to create free charges or holes other than 
the simple substitution of dopants just described.  Defects such as the absence of 
atoms (vacancies) or extra atoms occupying positions between the usual lattice sites 
(interstitials) can also create carriers.  The precise origin of free charge carriers 
varies greatly from material to material and the control of doping levels is a major 
technical challenge beyond the scope of the present discussion. 

6.2.2. Charge Carriers as Waves 
In the discussion of the lattice above, phonons were introduced as a convenient 

concept for describing atomic displacements.  We also find a wave -like description 
convenient for the free charge carriers.  Rather than imagining electrons as localized 
within a small region of space, the usual description in solids is to imagine electrons 
as waves with wavelengths longer than an interatomic distance.  

In this case the amplitude of the wave does not represent atomic displacement at 
all, but instead the amplitude represents the charge density.  More accurately, the 
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amplitude of the wave represents the quantum mechanical probability of finding a 
charge at that position.  And we assign to each charge carrier a wavevector (k), the 
direction of which indicates the direction of propagation of the wave and the 
amplitude of which (k=2π/λ) is inversely proportional to the wavelength of the wave.  
As usual, quantum mechanics tells us that such a wave carries momentum, given by 
Plank's constant divided by the wavelength, p=h/λ.   

As with phonons, the wave-like description represents no loss of generality 
because any spatial distribution of charge carriers can be represented using an 
appropriate summation of waves.  Just keep in mind that this concept is used for 
convenience, largely because the mathematics are simpler this way.  

So, charge carriers are imagined as waves and, whatever their origin, there are 
two major issues to be determined:  1) what types of charge carriers are actually 
allowed in crystals and 2) which ones are actually present under the conditions of 
interest?  Although the answers are different, the questions are the same  ones asked 
about phonons above. 

6.2.3. Electron Dispersion Relation:  Electronic Energy Bands 
To answer the question regarding the allowed charge carriers, the concept of 

energy bands must be  introduced.  Isolated atoms have discrete energy levels 
which may be occupied by electrons or may be empty.  When two atoms are brought 
together, these energy levels mix to some extent.  All of the valence electrons are 
consumed by filling the new "molecular energy levels," the lowest energy levels 
being filled first.  The energy levels below the energy of the isolated atoms are called 
bonding levels and the higher energy levels are called anti -bonding levels.  It is 
important to note that there are just as many energy levels in the molecule as there 
were in the two original, isolated atoms.  The allowed energies have shifted, but 
there is a correspondence in number of levels to the original atoms.  

As more and more atoms are brought together, the atomic energy levels become 
more and more mixed, but each energy level in  the original isolated atoms is still 
represented in the final energy state-scheme.  The individual energy levels of the 
individual atoms, form bands of allowed energies in the final solid.  This idea is 
represented schematically in Figure 7. 
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Fig. 7.  Schematic Representation of Energy Levels in an Isolated Atom (a) and the 
Formation of Energy Bands from N such Atoms Brought Together into a Solid (After 
Ashcroft and Mermin). 

Quantum mechanical techniques are required for calculating these energy 
bands.  Conceptually, these calculations are not more difficult than calculating, say, 
the allowed energy levels of a hydrogen atom.  The large number of atoms in a solid, 
however, means that the mathematics become considerably more complex and the 
number of energy levels to be calculated is as large as the number of atoms.  A 
variety of techniques have  been developed to perform these calculations, but they 
are beyond the present discussion. 

Recall that there are several different types of phonons (longitudinal, t ransverse, 
etc.) and that the energy depends on both the wavevector and the type of phonon.  
So too with electrons, but each type of electron is called a band and the energy of 
the electron depends on both the wavevector and the band.  The wavevector can 
point in any direction and can vary from a magnitude of k=0 (corresponding to an 
infinite wavelength) up to k=2π/a (corresponding to a wavelength of one interatomic 
spacing).  Figure 8 shows the full band structure for an alloy of 50%  Si and 50% Ge, 
as an example. 

This relationship between the allowed energy levels and the momentum of the 
electrons is called the charge carrier dispersion relation.  The terms "band structure" 
and "dispersion relation" mean the same thing with regard to electrons.  Fortunately, 
just as with phonons, simple approximations to the full band structure are usually 
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sufficient.  Often, only the energy states just above or just below the band gap are 
really important. 

Fig. 8:  Electronic Energy Band Structure Calculated for Si0.5Ge0.5 (After 
Krishnamurthy and Sher2).  The Energy Gap is Seen Between about -4 and -5 eV.  
States Below the Gap are FIlled and States Above the Gap are Empty, at Least in 
Undoped Material. 
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Fig. 9  The Lowest Energy Levels of a Single Band are Nearly Parabolic in Shape.  

If we magnify the energy states just above the band gap, we see that the energy 
dispersion relation is nearly parabolic, as suggested in Figure 9.  Using a simple 
parabola to describe the relationship between the energy and wavevector (or 
momentum) is called the effective mass approximation.  Indeed, the curvature of the 
dispersion relation defines the effective mass. 

For phonons, the Debye model is typically used rather than the full spectrum of 
allowed phonon energies.  For carriers, typically the effective mass model is used 
rather than the full band structure.  The idea is that charge carriers in a solid really 
are very different from totally free electrons and should be described by their band 
structure.  But for many purposes charge carriers in a solid behave just like totally 
free electrons, except that they appear to have a different mass. 

Indeed, one uses a different mass for each band that must be considered.  It is 
not unusual in thermoelectric materials to consider one band of electrons and 
another band of holes.  Sometimes several bands must be considered to get a good 
description of a particular materials behavior.  Still, it is a remarkable fact that very 
often one only needs to know the band gap and a few eff ective mass values in order 
to have a satisfactory approximation to the full band structure.  

6.2.4. Electron Distribution Function 
The previous section described which charge carriers are allowed in a solid.  

Now we need to turn to the question of which of  the allowed states are actually 
occupied. Fortunately, this is also a relatively simple calculation is given by the 
Fermi-Dirac Distribution Function, as shown in Figure 10. 
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Fig. 10  The Number of Charge Carriers Which Occupy the Energy Levels of a 
Particular Energy Band is Given, in Equilibrium, by the Fermi-Dirac Distribution 
Function as Shown for Several Temperatures. 

The principle difference between the phonon distribution function and the 
electron distribution function is that no more than one elect ron is ever allowed to 
occupy any given energy state.  This is the famous Pauli Exclusion Principle, which is 
most important at low temperatures and/or high doping levels.   

6.2.5. Statistical Mechanics: Calculating Properties 
Calculating the overall properties of a collection of charge carriers follows 

precisely the same pattern described above for phonons.  Now that we know which 
charge carriers are allowed (given by the dispersion relation) and which ones are 
expected to be present (given by the distribution function) we are in a position to 
calculate many properties of the charge carrier system.  Following the pattern used 
for phonons above, Table 4 outlines the procedure for calculating the energy 
associated with the charge carrier system. 
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Table 4:  Procedure for Calculating the Total Energy Associated with Charge Carriers. 

Total Property Sum over allowed types of charge 
carrier, i 

Sum over allowed 
wavenumber, k 

Contribution of 
each carrier 

x Distribution 
Function 

 
 

Energy 

 
 

= 

i=1⇒First Conduction Band 
i=2⇒Second Conduction Band 
i=3⇒First Valence Band 
i=4⇒Second Valence Band 
i=5⇒Etc. 

 
 

k≥0 
k≤2π/a 

 
 

ε(i,k) 

 
 
x 

 
 

f(i,k) 

7. NON-EQUILIBRIUM PROPERTIES OF SOLIDS 

Having discussed the equilibrium properties of solids we are finally in a position 
to discuss solids with driving forces and currents present.  Fortunately, most of what 
has been discussed can still be retained under non-equilibrium conditions. 

The first point to make clear is that the allowed energy levels are not altered at 
all in the presence of electrical potential gradients or temperature grad ients.  
Phonons which were not allowed in equilibrium are still not allowed.  All phonons 
which were allowed are still allowed.  And similarly for charge carriers.  

This means we can still use the same dispersion relations as before.  If the 
Debye model for phonons and the effective mass approximation for charge carriers 
were good enough to calculate equilibrium properties, then they are probably 
sufficiently accurate for non equilibrium properties as well.  And if necessary, the full 
phonon and electron structures can be used.  These, at least, do not need to be 
recalculated for non-equilibrium conditions. 

The main thing needed to calculate non-equilibrium properties is the non-
equilibrium distribution function.  Energy states which were occupied in equilibr ium 
become unoccupied and states which were unoccupied become occupied.  There 
are certain features we expect of the non-equilibrium distribution function.  We will 
not prove these features here, but merely suggest that they are reasonable 
expectations. 

First, we expect any deviations from equilibrium to be relatively small.  Whatever 
the equilibrium distribution function is, we don't expect it to change much just by 
applying a small electrical or thermal gradient.  Second, we expect the change in the 
distribution function to be proportional to the applied fields (electrical or thermal).  
We are looking to describe linear phenomena, like Ohm's law, so if we got any other 
result, we would throw out the calculation and try again.  

Finally, we have one more expectation.  In equilibrium there are no currents 
since there are just as many waves moving to the right as are moving to the left.  By 
definition, a current means there are more waves moving one direction than are 
moving in the opposite direction.  Therefore, we expect the deviations from 
equilibrium to be different for waves moving in opposite directions.  

7.1. Mean Free Time and Mean Free Path 
The equilibrium distribution functions provide only a statistical probability that a 

particular energy is occupied.  Any particular energy state, however, will not remain 
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as it is forever.  If the occupancy never changed, for example, it would be impossible 
even to heat up or cool off the material.  Implicit in the very idea of a distribution 
function is that the occupancy of energy states are constantly changing, and 
changing at rates very fast compared to the rate of change of any external forces.  

For each energy level, then, there is an average time between changes of 
occupancy.  This time is called the mean free time and it is usually represented by 
the Greek letter tau, τ.  When speaking of a wave (either a phonon or a charge 
carrier or whatever), τ is the average time the wave moves until it hits something or 
otherwise changes into some other type of wave.  The same quantity is also called 
the relaxation time or the  collision time.  The inverse, τ-1, is variously called the 
collision rate or scattering rate.  All these terms mean the same thing. 

Closely related to the mean free time is the mean free path.  This is just the 
distance (l) the wave travels during the time τ, or l=vτ.  Before discussing how to 
estimate the scattering rate, we will examine some of it's consequences. 

7.2. Boltzmann's Equation: Balancing In and Out 
The scattering rate is the first piece needed for calculating the non -equilibrium 

distribution function.  The actual value of the scattering rate is not important in 
equilibrium because it represents both how fast a state becomes occupied as well as 
how fast it becomes unoccupied.  If occupation changes for any reason, scattering 
will tend to bring the distribution function back to the equilibrium value.  

Boltzmann's equation provides a systematic method for accounting for the 
effects of forces, currents and scattering on the various distribution functions.  
Boltzmann's equation refers to the rate at which the distribution function changes 
and solving Boltzmann's equation is the most common method for computing the 
non-equilibrium distribution function.  So long as all external forces are steady, the 
occupancy (on average) of every energy level will also be steady.  The average rate 
of change of the distribution function is zero, so all you have to do is balance out the 
various effects. 

There are three main contributions to consider.  The first contribution is that due 
to scattering already discussed.  The second contribution is due to waves "drifting" 
into the region of interest from other parts of the material where the distribution 
function is different.  The third contribution is due to presence of forces which directly 
increase the momentum of a wave (which is the definition of a force) and thereby 
move the particle to a different energy state. 

This balancing act is illustrated in Figure 11.  All of these terms are zero in 
equilibrium and as a rule only first order contributions are included in the balance.  
Various approximations and mathematical techniques are available to solve 
Boltzmann's equation, but all of the solutions satisfy each of our expectations 
described above.  The only thing we need to know about the material to calculate the 
non-equilibrium distribution function is the scattering rate.  
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Figure 11.  Boltzmann’s Equation Determines the Non-Equilibrium Occupation of an 
Energy State by Balancing the Effects of Scattering, Forces and Drift on a Small 
Group of Energy States, in a Small Region of the Material. 

7.3. Statistical Mechanics: Calculating Properties 
Finally we are in a position to calculate an electrical current or a heat current in a 

solid.  The procedure is very similar to calculation of an equilibrium property.  Table 
5 shows the calculation of a heat current through a lattice.  

Table 5:  Procedure for Calculating the Heat Current Associated with Phonons. 

Total Property  Sum over allowed types of 
phonons, i 

Sum over allowed 
wavenumber, k 

Contribution of 
each phonon 

x Distribution 
Function 

 
 

Heat Current 

 
 

= 

i=1⇒Longitudinal Acoustic 
i=2⇒Transverse Acoustic #1 
i=3⇒Transverse Acoustic #2 
i=4⇒Optical #1 
i=5⇒Optical #2 
i=6⇒Etc. 

 
 

k≥0 
k≤2π/a 

 
 

ε(i,k) x v(i,k) 

 
 
x 

 
 

N(i,k) 

 
Very simple, really.  Each phonon carries an energy ε(i,k) at a velocity v(i,k).   

Multiply the energy by the velocity and you have the energy carried by  a single 
phonon.  Multiply this by the distribution function and add the contributions for each 
type of phonon and wavelength.  Now you have the total heat current due to all the 
phonons.  For phonons in a temperature gradient, the distribution function l ooks like 
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which has all the features we expected. 
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The first term is just the equilibrium distribution function and can be safely 
ignored when calculating currents.  Most of the information of direct interest to 
thermoelectrics is in the second term, the deviations from linearity.  The heat current 
will, as expected, be proportional to the temperature gradient and, using the 
definition of the thermal conductivity, the proportionality constant is identified as the 
thermal conductivity. 

All of the transport coefficients can be calculated in a similar manner.  The key is 
to know the dispersion relations for the type and the appropriate relaxation times, τ.  
Now we turn our  attention to calculating scattering rates (or  τ-1).polarons and 
hopping conduction, etc.  thermal conductivity (electronic and lattice), phonon drag,  

7.4. Calculating Scattering Rates 
Although quantum mechanical techniques are usually used to accurately 

calculate mean free times and scattering rates, the ideas are basically classical and 
most easily visualized for particles.  A simple visual illustration may help, as shown 
in Figure 12.  Consider a continuous stream of particles, all moving in the same 
direction and with the same velocity.  If an obstacle is placed in the path of this 
stream, it is a simple matter of geometry to calculate how many particles strike the 
object per second.  We don't really care at this point what happens to the particles 
after striking the object, just the rate. 

Obstacle casts shadow of area=     r 2π

N = # particles/cm3

Moving at velocity = v cm/s

# particles which hit obstacle/secScattering rate =
= 1/τ
= N v    rπ 2

 
Fig. 12:  Calculating Scattering Rates is Essentially a Geometry Problem: How Big 
Does this Particular Kind of Obstacle Appear to be When this Particular Kind of 
Moving Particle Strikes It? 

This is called the collision rate, or equivalently the scattering rate, and the 
effective size of the obstacle (given by πr2 here) is called the cross section.  Note 
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that the scattering rate depends both on properties of the moving particle (such as 
their density and their velocity) as well as on properties of the obstacle (in this case, 
the cross section of the obstacle). 

When the moving "particles" are phonons or charge carriers, almost anything 
can look like an obstacle and impede the flow:  charged  impurities, neutral 
impurities, grain boundaries, inclusions, and so on.  We use the term scattering 
mechanism to distinguish one type of obstacle from another.  Most obstacles cannot 
be treated as simple hard balls, as suggested in Figure 12.  Usually, i n fact, the 
apparent size (i.e. the cross section) of the obstacle depends on whether the 
particles hitting it are moving fast or slow.  Or the obstacle size can depend on 
whether the phonon, for example, is acoustic or optical.  

It is easy to become lost in the mathematics, but all we are really trying to do is 
to figure out how often this type of particle is colliding with that type of obstacle.  If 
we know this (the scattering rate), we can work out the balancing act for the 
distribution function (using Boltzmann's equation) and then calculate the currents 
which result from electrical or thermal gradients. 

Now, what are the important scattering mechanisms for phonons?  For charge 
carriers?  These points are addressed next.  

7.5. Phonon Scattering Mechanisms 
7.5.1. No Scattering 

Although the concept of a phonon "mean free time" is implicit even in discussion 
the equilibrium distribution of phonons, the effect of scattering is much more 
profound on the non-equilibrium distribution function.  Indeed, only scattering 
mechanisms tends to return the distribution function to its equilibrium values.  If the 
scattering rate were truly and exactly zero, then once a phonon -heat current was 
established (for example) the heat current would continue to flow even after the 
temperature gradient was removed.  Without scattering, nothing would stop the 
current from flowing! 

This situation is sometimes said to imply an infinite thermal conductivity, but it 
might be more accurate to say that the thermal conductivity is simply not  defined 
because the thermal conductivity is, by definition, the proportionality constant 
between heat current and temperature gradient.  Persistence of heat current in the 
absence of a temperature gradient does not occur in common experience, but if it di d 
we could not use the concept of "thermal conductivity" at all.  

Nevertheless, this discussion serves to point out that a small scattering rate 
corresponds to a large thermal conductivity and vice-versa. 

7.5.2. Phonon-Phonon Scattering 
One of the first questions to consider is the thermal conductivity of the ideal 

crystal, one with no defects of any kind.  But even a single phonon represents a 
defect, in the sense that the atoms have been disturbed from their ideal positions.  
Does one phonon represent an obstacle to another phonon?  The answer is "yes," 
but the scattering rate of one phonon due to collision with another is really very 
small, which is why many ideal, insulating crystals (diamond, sapphire, BeO, etc.) 
have very large thermal conductivity values. 

To first order, in fact, all the phonons just add up without disturbing each other at 
all.  And if all the springs in our original mass-and-spring model were ideal springs 
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there would be no phonon-phonon scattering.  But in real materials the springs never 
quite ideal and these small deviations from ideal behavior mean that the presence of 
one phonon does disturb all the other phonons.  This is called a phonon -phonon 
interaction and the resulting phonon-phonon scattering rate increases with 
increasing temperature simply because there are more phonons around.  

In the quantum mechanical picture of phonons, this type of phonon -phonon 
scattering is described as the absorption or emission of one phonon by another 
phonon, as suggested in Figure 13. 

Incoming Phonon

Scattered Phonon:
Increased Energy and Momentum

Absorbed Phonon (obstacle)

 
Fig. 13:  Schematic of a Phonon-Phonon Interaction in Which the Incident Phonon 
Increases Energy, While the "Obstacle" is Represented by an Absorbed Phonon.  
Phonon Emission is Similar, Except the Incident Phonon Loses Energy While the 
"Obstacle" is Represented by an Emmited Phonon. 

7.5.3. Point Defect and Alloy Scattering 
The next most important source of scattering for phonons is due to point defects.  

A point defect simply means that one of the atoms making up the crystal is differe nt 
from all of the others, such as shown in Figure 14.  

A point defect is (by definition) very small and has little or no effect on long 
wavelength, low energy phonons.  But short wavelength, high energy phonons are 
strongly scattered by point defects as suggested in Figure 14.  Any type of defect will 
scatter phonons, but the most important type of point defect in thermoelectric 
materials is usually an atom with a mass very different from the host.  
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Fig. 14.  A Point Defect Scatters an Incoming Phonon Very Much Like a Rock 
Scatters a Water Wave:  A Linear Incoming Wave Scatters in all Directions. 

When the main difference between the point defect and the host is the mass of 
the atom, the scattering is often called mass fluctuation scattering or alloy scattering.  
These terms are generally preferred over the term "point defect" when there are 
almost as many "defect" atoms as host "atoms," such as a 50%Si -50%Ge alloy.  But 
the idea is the same: if the lattice is really uniform, phonons travel with very little 
scattering.  When the lattice has lots of defects, phonons are strongly scattered.  

Alloy scattering is utilized in almost all of the important thermoelectric materials 
as a method of lowering the lattice thermal conductivity . 

7.5.4. Phonon-Electron (or Hole) Scattering 
When a crystal is doped and charge carriers are created there are at least two 

effects which increase the scattering of phonons.  First, whatever defect was 
introduced to produce carriers (donor or acceptor dopants, vacancies, interstitials, 
etc.) represents a point defect and these point defects will scatter phonons as 
described above.  Generally, however, the number of point defects associated with 
dopants that this point defect scattering is much smaller than  the point defect 
scattering due to, say, alloying. 

A much larger effect is the scattering of phonons due to the charge carriers 
themselves.  To see that charge carriers and phonons should affect each follows 
from a fairly simple argument.  When we described how to calculate the allowed 
energy levels of the electrons we had to take into account the positions of the atoms 
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in the lattice.  The simplest thing to do is to assume the atoms are all in their 
undisturbed positions and electronic band structure calculations are generally 
performed using this assumption.  But this assumptions means there are no phonons 
present at all.  And indeed, if a single phonon is added to the crystal the entire band 
structure is modified (however slightly). 

The shift in the electronic energy levels due to a small deformation of the lattice 
is called the deformation potential and this provides a link between the system of 
charge carriers and the system of phonons.  Through this interaction, a phonon may 
deposit its energy and momentum into one of the charge carriers.  Or, a charge 
carrier can lose energy and momentum, creating a phonon.  In either case, both the 
phonon and the charge carrier are scattered.  

In order to calculate the total scattering rate for any one type of phonon, we just 
add up the scattering rates between that particular phonon and all of the charge 
carriers.  It turns out that conservation of energy and momentum considerations 
severely restrict which phonons can interact with which charge carriers.  Very low 
energy, long wavelength phonons can interact with essentially all the charge 
carriers.  But above a certain phonon energy, there are essentially no charge 
carriers around to interact with.  So, the phonon-electron (or hole) scattering 
mechanism is much more effective at scattering low energy, long wavelength 
phonons than it is at scattering high energy, short wavelength phonons.  

7.5.5. Grain Boundary Scattering and Microstructure 
Grain boundaries, voids, inclusions, precipitates and the like are all essentially  

geometrical obstacles and their scattering rates on phonons can be calculated very 
much as suggested in Figure 12.  There has been a great deal of effort, both 
theoretical and experimental, on the effect of such microstructural effects on the 
lattice thermal conductivity and the area continues to be of some interest.  It should 
be pointed out that the sample walls themselves also scatter phonons.  Indeed, as 
the temperature is reduced phonon scattering due to other mechanisms (such as 
phonon-phonon scattering, for example) can become very small and phonon mean 
free path values can easily become as large as the sample itself.  Under these 
conditions, the total scattering rate and therefore the thermal conductivity will depend 
on the sample size! 

7.5.6. Typical Total Phonon Scattering Rate 
The total scattering rate for a particular type of phonon is the sum of all of the 

individual scattering rates for that type of phonon.  Once the total scattering rate is 
known, the non-equilibrium phonon distribution function can be determined and the 
procedure outlined in Table 5 applied to determine the total heat current.  The total 
heat current will typically involve a kind of weighted average of the mean free time, τ, 
and the heat current will be proportional to the temperature gradient.  Again, the 
proportionality constant is the thermal conductivity due to phonons.  

While the usual procedure involves writing down an integral, the procedure of 
summing all of the contributions to the thermal conduct ivity can be summarized 
graphically as shown in Figure 15.  Each curve represents the mean free time due to 
various combinations of scattering mechanisms, in this case for heavily doped SiGe 
at high temperatures.  The thermal conductivity is given by the a rea under the 
curves.  Note that more scattering mechanisms always gives a lower thermal 
conductivity. 
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Fig. 15: The Phonon Mean Free Path (l = τv) for Several Combinations of Scattering 
Mechanisms, Weighted as Appropriate for Heat Conduction.  The Lattice Thermal 
Conductivity is Given by the Area Under the Curve Appropriate to the Combination of 
Scattering Mechanisms Under Consideration. 

7.6. Charge Carrier Scattering Mechanisms 
7.6.1. No Scattering 

Just as discussed for phonons above, if there charge carriers were not scattered 
at all a material could carry a current without any driving force at all.  Unlike for 
phonons, however, there actually are materials in which the charge carrier scattering 
is truly zero.  We call such a material a superconductor and electrical currents 
induced in such a material will persist indefinitely, even after the action which 
produced the currents is removed.  We say that superconductors have zero 
resistance, but it might be more accurate to just say that Ohm's law has utterly failed 
and that the resistivity simply is not defined for such a material.  

7.6.2. Electron-Electron Scattering 
Electrons do interact with each other, this scattering mechanism is usually 

neglected altogether in the simplest calculations.  The reason is not because 
electron-electron scattering rates are always small.  The reason electron -electron 
scattering is usually neglected is because this scattering has the relatively unusual 
property that it does not tend to return the charge carrier system to equilibrium.  
When an electron collides with another electron, momentum can be exchanged 
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between the electrons but it cannot be destroyed.  So if there was a current before 
the collision, there will be exactly the same current after the collision.  For many 
purposes, therefore, electron-electron scattering can be neglected.  Be aware, 
however, that a really proper and complete model still must include the effect.  

7.6.3. Electron (or Hole)-Phonon Scattering 
Above, we discussed the scattering of phonons by electrons.  For exactly the 

same reasons, electrons (and/or holes) are also scattered by phonons.  To find the 
total scattering rate of an electron due to all the phonons, we just add up the 
scattering of that particular electron due to each of the phonons around.  

In this case, there is a simple physical interpretation to the sum of all of the 
phonons.  A single phonon describes displacement of a particular type and 
wavelength of all of the atoms in the crystal .  But the sum of all phonons describes 
the average displacement of an atom due to thermal agitation.  Kind of the average 
wobble of an atom.  Since it is moving back and forth, the atom looks like an obstacle 
to an electron.  And in fact this "obstacle" looks the same size to all electrons. 

But since thermal agitation increases with increasing temperature, the scattering 
rate increases with temperature.  For most semiconductors and metals, electron 
scattering due to phonons is the main scattering mechanism and this is why the 
resistivity of metals increases with temperature and why the mobility of 
semiconductors decreases with increasing temperature.  

7.6.4. Charged Impurity Scattering 
The next most important scattering mechanism for charge carriers is due t o 

charged impurities, usually the donors or acceptors which created the charge 
carriers themselves.  This is a type of point defect scattering, but the charge on the 
impurity deflects passing carriers very strongly.  Charged impurity scattering is 
basically independent of temperature and often becomes the most important 
scattering mechanism at low temperatures, where electron-phonon scattering 
becomes negligible. 

7.6.5. Neutral Impurities and Alloy Scattering 
Neutral impurities, such as dopants which are not ionized or alloys of materials 

with the same number of outer shell electrons (such as Si alloyed with Ge) are still 
defects, even if they are not charged.  And they still scatter charge carriers and act 
to reduce the carrier mobility.  This effect is wel l known in metals:  an alloy of Cu and 
Ag in fact has an electrical resistivity many times the resistivity of pure Cu or pure 
Ag. 

It was mentioned above that most useful thermoelectric materials are alloys 
because the lattice thermal conductivity is reduced due to alloy scattering.  But in 
fact the electrical mobility (and electrical conductivity) is also generally reduced by 
alloying.  Alloying is successful for thermoelectric materials because the reduction in 
the lattice thermal conductivity is generally much greater than the reduction in the 
electrical conductivity.  In terms of electrical performance alone, however, the pure 
material is generally significantly better than the alloy.  

7.6.6. Grain Boundaries and Other Scattering 
Grain boundaries and other types of crystalline defects do scatter the charge 

carriers, but non-scattering effects are often much greater.  A grain boundary, for 
example, is a disruption of the regular pattern of bonds in the crystal.  Generally 
there are strains in the bonds or incomplete bonds around the grain boundaries 
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which can amount to extra (or absent) energy states and extra (or absent) charge.  
The net result is that an electrical potential barrier is set up along a grain boundary.  

The grain boundary potential barrier may not be as large as the barrier at the 
edge of the sample, but it is still large enough to affect motion of carriers across the 
boundary.  Not all of the carriers will have enough energy to cross the potential 
barrier and the current flow can be seriously reduced.  While scattering is also 
present, the major effect is that the barrier acts much like a high resistance inclusion.  
It can be very difficult to untangle the effects of grain boundaries from true scattering 
mechanism effects. 

7.6.7. Typical Total Charge Carrier Scattering Rate 
Many thermoelectric materials can be well described by accounting for just two 

charge carrier scattering mechanisms, scattering due to phonons and scattering due 
to charged impurities.  The mean free path due to these scatteri ng mechanisms is 
illustrated in Figure 16.  The deviation of the distribution function from the equilibrium 
distribution function is proportional to the mean free path, so the mean free path 
essentially determines all of the electrical transport coefficien ts. 

 
Fig. 16: The Electron Mean Free Path (l = τv) due to Electron-Phonon Scattering 
Alone (Upper Curve) and Due to the Combined Effects of Phonon and Impurity 
Scattering (Lower Curve). 
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8. SELECTED THERMOELECTRIC PROPERTY TRENDS 

While the entire procedure for calculating thermoelectric properties has in fact 
been outlined above, a few schematic examples may help to illustrate how the 
process works in practice.  This can be a complex mathematical operation as it 
typically involves triple integrals to account for the summations over all three 
dimensions of wavenumbers which are allowed.  Instead, the summations over 
allowed wavenumbers are often converted to a single summation over allowed 
energy states.  An additional factor is introduced to account for the fact that there are 
typically many charge carriers with the same energy, but different wavenumbers.  
This factor is called the density of states.  The density of states, D(ε), contains a 
great deal of the difficult three dimensional integration factors and only needs to be 
calculated once. 

We also note that the non-equilibrium distribution function can always be 
expressed as a sum of the equilibrium distribution function plus a small correction, 
which we calculate using Boltzmann's equation and the scattering rate.  If we are 
calculating currents, the equilibrium portion of the full distribution function can be 
safely ignored, because there are no currents in equilibrium.  

Let us now examine the calculation of electrical and heat currents associated 
with a single band of electrons.  The general procedure given can, with the 
simplifications just described, be rewritten as shown in Table 6.  

Table 6:  Procedure for Calculating the Electrical and Heat Currents Associated with a 
Single Band of Electrons. 

Total Property  Sum over allowed 
energy states 

x # of allowed 
wavevectors/energy 

x Contribution of 
each electron 

x Distribution 
Function 

Electrical Current = ε≥0 x D(ε) x (-e) x v(ε) x δf(ε) 
Heat Current = ε≥0 x D(ε) x (ε-µ) x v(ε) x δf(ε) 
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Fig. 17:  Schematic of Calculation of Transport Coefficients.  The Band Edge 
Represents the Lowest Energy State Allowed for the Particular Band Under 
Consideration. 

Note that each electron carries an electric current given by ( -e)v, since electrons 
are negatively charged.  The heat current carried by each electron is ( ε-µ)v.  ε is the 
total energy of the electron.  µ is called the chemical potential and essentially it 
represents the internal energy associated with a single electron.  Heat is the 
difference between the total energy and the internal energy, which is basically wh y 
the factor (ε-µ) is used for the heat current. 

These factors can be illustrated graphically as shown in Figure 17.  The main 
points in this Figure can be extracted directly from the definitions given previous ly, 
but it is only schematically correct and intended merely as an illustration.  Each of 
the transport coefficients is given by a certain type of weighted average of the 
scattering time.  With one weighting factor, you get the electrical conductivity.  
Another weighting factor gives a quantity related to the Seebeck coefficient.  A third 
weighting factor gives a quantity related to the thermal conductivity.  

8.1. Electrical Conductivity 
The electrical conductivity (σ) is the simplest property to calculate.  From Figure 

17, you can see that a greater chemical potential (which just corresponds to a larger 
number of carriers) will increase σ.  More carriers, better conductivity.  Also, a 
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greater scattering time will increase σ.  This is to say that less scattering means 
greater conductivity. 

8.2. Seebeck Coefficient 
Before examining the calculation, remember what the Seebeck coefficient 

means:  a material in a temperature gradient will develop a voltage between the hot 
end of the sample an the cold end of the sample.  Why?  The charge carriers at the 
hot end of the sample have, on average, more energy than the charge carriers at the 
cold end.  So, they are moving faster at the hot end than the c old end.  Why don't 
they just tend to diffuse down to the cold end? 

The answer is:  they do diffuse to the cold end.  But after only a few extra 
carriers have collected on the cold end, they set up a voltage which prevents further 
carriers from building up.  At this point the hot end is deficient by a few carriers.  The 
Seebeck coefficient represents the electrical potential required to balance the 
thermally driven diffusion. 

But, not all the charge carriers have the same velocity.  In fact, as we have 
discussed, the charge carriers have an entire distribution of velocities.  The Seebeck 
coefficient represents the average balancing act between thermal and electrical 
forces.  Carriers with below average energy tend to under contribute to the Seebeck 
and carriers with above average energy tend to over contribute to the Seebeck.  

The middle panel of Figure 17 illustrates the calculation is somewhat greater 
detail.  The magnitude of the Seebeck coefficient, |S|, is related to the area under the 
bottom curve in the middle panel.  Carriers with energy above the chemical potential 
contribute to making |S| bigger, while carriers with lower energy contribute to making 
|S| smaller.  To make the Seebeck larger, you only need to increase the relative 
contribution of carriers with ε>µ compared to the carriers with ε<µ. 

The first way to increase the Seebeck coefficient is to decrease the chemical 
potential, µ.  Which is just another way of saying, lower the carrier concentration.  
Conversely, as the carrier concentration and chemical potential are increased, the 
carriers become (in a sense) more symmetrically divided between states below 
average and above average in energy.  So, a high doping levels the cancellation 
becomes more complete and the |S| becomes smaller.  

Other ways to alter |S| involve modifying the density of states or the scattering 
rate to shift the balance to higher energy states.  This is a little harder to control in 
practice and the only readily adjustable tool to change the Seebeck coefficient is to 
alter the doping level. 

8.3. Electronic Contribution to the Thermal Conductivity 
In addition to the heat current carried by the phonons, there is also a heat 

current due to the charge carriers called the electronic contribution to the thermal 
conductivity.  The quantity which is actually calculated with the techniques described 
here is the thermal conductivity plus another term related to the Seebeck and 
electrical conductivity, as shown in the third panel of Figure 17.  Although the 
calculation is somewhat more complex, Figure 17 suggest the same factors which 
increase the electrical conductivity (increase µ and/or τ, for example) also increase 
the electronic contribution to the thermal conductivity.  



Vining - 34 

 

In fact, the electronic contribution to the thermal conductivity is approximately 
proportional to the electrical conductivity.  This relationship between electrical 
conduction and thermal conduction due to carriers is called the Wiedemann-Franz 
law. 

8.4. Optimum doping 
Finally, we are ready to consider the full thermoelectric figure of merit.  Figure 18 

shows idealized trends in the thermoelectric properties as a function of doping level.  
The Seebeck coefficient and lattice contribution decrease with increasing doping 
level.  The electrical conductivity and lattice contribution increase with doping level.  
Typically, the optimum doping level is in the range of 1019-1020 cm-3. 

8.5. Alloying 
Several effects take place when forming an alloy between two different 

semiconductors, such as A1-xBx.  Even if the carrier concentration values is the 
same for all samples in the alloy system, each of the thermoelectric properties will in 
general vary as the alloy composition is varied.  Ideally, the Seebeck changes very 
little with alloy composition (this is not true for metals, however).  Because of alloy 
scattering, however, both the electrical and thermal conductivities will generally be 
smaller than simple linear average of the two end members of the alloys.  These 
effects are illustrated in Figure 19. 

9. SUMMARY 

This course has outlined the conventional theory of the thermoelectri c properties 
of solids.  The main concepts pertaining to phonons and charge carriers, both in 
equilibrium and in non-equilibrium have been discussed.  The concepts have been 
emphasized here, rather than the mathematics, with the belief that the mathematics  
can be learned with practice. 
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Fig. 19:  The Effect of Alloying on the Various 
Thermoelectric Properties.  The Largest Effect is 
Usually on the Lattice Component of the Thermal 
Conductivity and for this Reason Alloys are 
Generally Preferred Over Pure Compounds. 

It should be emphasized at this point, however, that by omitting the mathematics 
the descriptions have become necessarily imprecise.  Where several paragraphs, a 
Table and a Figure have been required in the present discussion, exactly the same 
thing can be often be stated in a single line with the ap propriate equation.  It is hoped, 
however, that by presenting the concepts here in a verbal and visual format, the 
student will more easily be able to grasp the meaning of the mathematics when it is 
finally confronted.  For the serious student, however, fl uency with the appropriate 
mathematics is essential and further reading of some of the more standard texts is 
highly recommended. 
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10. SUGGESTED READING 

Ziman, J. M, Electrons and Phonons, Oxford Press, Oxford, 1960. 
This classic text offers a very deep and well organized discussion of transport theory.  It is not for 
the timid, however, as a rather high level of mathematical physics is assumed. 

Ashcroft, N. W. and Mermin, N. D., Solid State Physics, Holt, Rinehart and Winston, 
New York, 1976. 

An excellent overall introduction to solid state physics for the advanced undergraduate or early 
graduate student.  This is a general text and while transport theory is quite adequately covered, the 
thermoelectric specialist may want a deeper discussion of thermoelectric-related issues. 

Fistul', V. I., Heavily Doped Semiconductors, Plenum Press, New York, 1969. 
Uniquely focused on issues peculiar to heavily doped semiconductors (including thermoelectrics) 
this book is particularly strong on providing a consistent notation for the essential transport integrals. 

Rowe, D. M., and Bhandari, C. M., Modern Thermoelectrics, Holt Saunders, London, 
1983. 

Easily the best and most complete resource specifically on thermoelectricity in many years.  Every 
thermoelectrician should read this book. 

Bhandari, C. M., and Rowe, D. M., Thermal Conduction in Semiconductors, Wiley, New 
York, 1988. 

Specifically focused on transport in semiconductors, and not just thermal transport.  This book 
supersedes all of the earlier texts on thermoelectric properties of semiconductors. 

Ioffe, A. F., Semiconductor Thermoelements and Thermoelectric Cooling , Infosearch, 
London, 1957. 

Ioffe's classic text is still valuable after all these years.  If you think you are doing something new, 
check here first because probably Ioffe thought about it. 

de Groot, S. R., and Mazur, P., Non-equilibrium Thermodynamics, Dover, New York, 
1984. 

Thermoelectricity is a special case of cross-effects and many other non-equilibrium systems have 
been studied.  This text places thermoelectric phenomenology on a firm footing with regard to 
thermodynamics in general.  Not much immediate impact on device design or even materials 
development, but required reading for the well educated thermoelectrician. 
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