TY - SLIDE KW - Invited AU - Cronin Vining AB -

• Introduction to Thermoelectricity 4– Basics 5– Brief History 6– Recent Progress 9• TE Cooling 15– Refrigeration Coefficient of Performance (COP) 16– Applications 17– Robotic Assembly 26– Trends 33• Thermoelectric Power Generation: TEGs 34– Selected Known TE Materials 36– Some Applications 37– Space Power 40– Remote power 47– Waste Heat 49• Basic TEG Design Principles 54– We Design a Thermopile 56– ZT & Efficiency 76– A/L Ratio 86– Some Losses 92• Device Gallery 99• More Advanced TE Device Concepts 106– Cascading & Segmenting 107– Mowry et al’s Cascaded RTG 115• Thermoelectric Materials 116• Fundamentals and Physical Phenomena of TE Materials 117– Lattice Thermal Conductivity 134– Electrons (and Holes) 147– Simplest Theory of ZT 162– Phonon Glass – Electron Crystal 170• Measurement Techniques – A Brief Introduction 174• Case Study I: SiGe 186– Early R&D 191– Dopant Precipitation 200• ZT Theory – n-type SiGe 206• Dopant Precipitation in SiGe – Some Details 216• Other Degradation Mechanisms 232• Case Study II: History of GaP additions to SiGe 237– Misconceived attempt at thermal conductivity reduction 237– Dopant Precipitation in SiGe/GaP 248– Status of SiGe/GaP 257– SiGe/GaP in Devices 259• Other Notable Warts 261– The ‘Selenides’ Saga 262– The Boron Carbide faux-breakthrough 271• Next Generation TE Materials 272– Skutterudites 273– Chevrel Phase Materials 282– Zinc Antimony 288– Clathrates 290– Other high temperature materials 295– Quantum Wells 299– Superlattices 310– Other Approaches 316– Wild claims and Other Sightings 325• Concluding Remarks 330

CY - NASA Glenn Research Center, Cleveland, Ohio DA - 2004/06/23/24 LA - eng N2 -

• Introduction to Thermoelectricity 4– Basics 5– Brief History 6– Recent Progress 9• TE Cooling 15– Refrigeration Coefficient of Performance (COP) 16– Applications 17– Robotic Assembly 26– Trends 33• Thermoelectric Power Generation: TEGs 34– Selected Known TE Materials 36– Some Applications 37– Space Power 40– Remote power 47– Waste Heat 49• Basic TEG Design Principles 54– We Design a Thermopile 56– ZT & Efficiency 76– A/L Ratio 86– Some Losses 92• Device Gallery 99• More Advanced TE Device Concepts 106– Cascading & Segmenting 107– Mowry et al’s Cascaded RTG 115• Thermoelectric Materials 116• Fundamentals and Physical Phenomena of TE Materials 117– Lattice Thermal Conductivity 134– Electrons (and Holes) 147– Simplest Theory of ZT 162– Phonon Glass – Electron Crystal 170• Measurement Techniques – A Brief Introduction 174• Case Study I: SiGe 186– Early R&D 191– Dopant Precipitation 200• ZT Theory – n-type SiGe 206• Dopant Precipitation in SiGe – Some Details 216• Other Degradation Mechanisms 232• Case Study II: History of GaP additions to SiGe 237– Misconceived attempt at thermal conductivity reduction 237– Dopant Precipitation in SiGe/GaP 248– Status of SiGe/GaP 257– SiGe/GaP in Devices 259• Other Notable Warts 261– The ‘Selenides’ Saga 262– The Boron Carbide faux-breakthrough 271• Next Generation TE Materials 272– Skutterudites 273– Chevrel Phase Materials 282– Zinc Antimony 288– Clathrates 290– Other high temperature materials 295– Quantum Wells 299– Superlattices 310– Other Approaches 316– Wild claims and Other Sightings 325• Concluding Remarks 330

PP - NASA Glenn Research Center, Cleveland, Ohio PY - 2004 TI - Short Course on the ABCs of Thermoelectrics UR - http://cvining.com/system/files/articles/vining/presentations/20040609-ABCs-of-TE.pdf ER -