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Abstract
Dynamic measurement techniques such as ac resistivity

and the Cahill 3-ω [1] thermal conductivity method induce
periodic currents in materials.  In thermoelectric materials the
coupling between electrical and thermal effects means the
normal mode excitations are generally attenuated waves of
mixed electrical/thermal character.  Since ZT is one measure
of the coupling between the electrical and thermal effects it is
perhaps not surprising that ZT is also a measure of the mixing.
This paper examines solutions to the coupled thermoelectric
diffusion problem and discusses some implications for
measurements.

Introduction
Diffusion of heat and charge in solids is ordinarily well

described by the approximate diffusion equations
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where η is the electrical potential (or more precisely, the
electrochemical potential), T is the temperature, and de and dq
are the electrical and thermal diffusivities.  These diffusion
equations derive from conservation of energy and charge
considerations, with only a few simplifying assumptions.

In thermoelectric materials heat and electricity are coupled,
an effect neglected above.  This paper seeks to identify when
the above expressions are adequate and when a more
complete treatment is required.

First, the coupled diffusion equations are derived and the
characteristic eigenvalue problem is solved to identify the
normal modes.  The resulting eigenvalues represent diffusivity
values for coupled temperature-potential diffusion and the
eigenvectors indicate the degree to which temperature and
potential diffusion are mixed in the normal modes.  Next the
behavior of the normal mode diffusion constants is examined
as a function of coupling.  And as an example, the coupled
boundary-value problem corresponding to the 'flash' method
of determining the thermal diffusivity is considered.

Thermoelectric Diffusion Equations
The first task is to write the problem in terms of

measurable properties.  Start with conservation of charge and
energy
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and definitions of the entropy flux ( S ) and time rate of
change of the entropy density ( S& )
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Combining (2) and (3) and defining an entropy source term, s,
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allows connection to the ordinary transport coefficients,
assuming the currents are linearly proportional to the
gradients of the potentials, by
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Using a more compact matrix notation.
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with the transport matrix L given by
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Here i is the electric current density, E is the electric field, ∇T
is the temperature gradient, σ is the electrical conductivity, α
is the Seebeck coefficient and λ is the thermal conductivity
(measured under the condition i =0).  γL is a convenient
measure of the relative strength of the thermoelectric effects
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where ZT is the dimensionless thermoelectric figure of merit.
Within the same linear response regime, the time variations

as can be written
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which is conveniently summarized in matrix form as
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with the capacity matrix, C, given by various thermodynamic
derivatives.

The symmetry of C is a consequence of the second law of
thermodynamics and the off-diagonal elements (C12 and C21)
are exactly equal. C22-C12

2/C11 is essentially the heat capacity.
C11 is related to the carrier concentration although in general it
is a slightly more complex quantity.  C21 represents the change



in entropy (or heat) when the charge
is changed isothermally and C12
represents the change in charge with
temperature, keeping the
electrochemical potential constant.
In principle each coefficient can be
both calculated and measured,
although the cross coefficients
rarely are.

A 'γ' can  be defined for the C
matrix as well
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which again is a convenient measure
of the relative magnitude of the
cross effects.

Combining conservation of
energy and charge with linear
response considerations yields the
coupled diffusion equations
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For the remainder of this paper the entropy source term will
be neglected and the C and L matrices will be treated as
constants, independent of chemical potential and temperature.
The non-linearities so neglected, however, can in principle
lead to a variety of interesting behavior.

The coupled diffusion problem may be solved using the
usual methods.  Solutions which oscillate in space and decay
with time like
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or which oscillate in time and decay exponentially in space
like
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are possible.  The first case is often useful for initial value
problems, where for example the potential and temperature
distribution are known at some initial time and one wishes to
know the future time evolution of these functions.  This case
will be examined below.  The second case occurs in methods
where the potential (or temperature) is forced to oscillate at a
fixed frequency, such as in an ac resistivity measurement (or
an Å ngstrom [2] or Cahill 3-ω [1] thermal conductivity
measurement).

Solution of the characteristic equation yields the
eigenvalues
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where
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are the usual electrical and thermal diffusivity values for the
respective uncoupled diffusion problems.

Thus the eigenvalues depend on the two uncoupled
diffusivity values and on the coupling between electrical and
thermal effects represented by the two γ values.

The two eigenvectors are given by
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which again illustrates that in the absence of thermoelectric
coupling (C12=L12=0), the solutions uncouple to one purely
electrical diffusion solution and another purely temperature
diffusion solution.
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Figure 1:  Actual diffusivity values α+ and α- as functions of the diffusion constants de

and dq neglecting coupling and the magnitude of thermoelectric coupling (γC, γL).



Behavior of the eigenvalues
The two eigenvalues α+ and α- represent two diffusion

constants which appear in two independent solutions of the
form given by Eqs. 12 or 13.  In a great many materials the
electrical diffusivity (de) is greater than the thermal diffusivity
(dq), sometimes very much greater, so it is natural to identify
the larger eigenvalue α+ as an 'electric-like' diffusion
coefficient and the smaller eigenvalue, α-, as a 'heat-like'
diffusion coefficient.  It is important to note, however, that so
long as thermoelectric coupling is not zero each solution
involves time and spatial variations of both the
electrochemical potential and the temperature.  Further, when
de < dq (which is true for some poor mobility materials) the
identification of 'electric-like' or 'heat-like' can become
ambiguous and the roles of α+ and α- can reverse.

The constants de and dq represent the diffusivity values
expected in the absence of thermoelectric effects, but  α+ and
α- are the diffusivity values which one observes in dynamic
laboratory measurements. Fig. 1 illustrates how the observed
diffusivity values (α+ and α-) depend on de and dq and on the
degree of coupling.

Fig. 1 shows the thermoelectric coupling can significantly
modify the actual diffusivity values compared to the values
expected in the absence of coupling.  The situation is
particularly severe when both types of coupling are large (i.e.
when γC and γL>>1).  For most materials, however,
thermoelectric coupling is small (γC and γL only slightly
greater than 1) and the actual diffusivity values are little
modified from the uncoupled values de and dq.

For de>>dq the first order corrections to the diffusivity is
given by
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Eq. 17 illustrates that the corrections depend on the departure
from no coupling (i.e. γC-1 and γL-1), a delicate balance
between the two types of thermoelectric coupling (γC vs. γL),
and on the relative magnitudes of the two uncoupled
diffusivity values (de and dq).

Thermal Flash Diffusivity
The flash technique (Fig.  2) developed by Parker et al [3]

for determining  thermal diffusivity is relatively simple, fast
and insensitive to heat loss.

Figure 2: 'Flash' methods determine thermal
diffusivity on thin, disk-shaped samples from the
temperature vs. time response of the front face.

The boundary conditions for the flash method are that no
heat or charge enters or leaves the sample, except during a
brief period (short compared with any characteristic internal
diffusion time) when heat is deposited on the rear face of the
sample.  The mathematical problem including the effects of
thermoelectric coupling is solved using techniques essentially

identical to a heat flow problem discussed by Carslaw and
Jaeger [4], except that here two independent solutions are
required to conserve charge.  The time dependence of the
electrochemical potential and temperature of back face of the
sample are given by
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Qo is the total heat deposited in the sample at temperature To.
These solutions ensure that no electrical charge enters or
leaves the surfaces at any time, even during the heat flash
itself.

The time dependence of the temperature of the back face is
given by the sum of two terms:  1) an 'electric-like' term with
amplitude A+ propagating with a characteristic diffusion time
governed by α+and 2) a 'heat-like' term with amplitude A -
propagating with a characteristic diffusion time governed by
α-.  Fig. 3 illustrates how the amplitude of more slowly
propagating 'heat-like' portion of the temperature response
varies with relative magnitude of the two uncoupled
diffusivity values (de and dq) and the degree thermoelectric
coupling (represented by γC and γL).

Again, thermoelectric coupling significantly modifies the
results compared to the values expected in the absence of
coupling.  When both types of coupling are large (i.e. when γC

and γL>>1) the 'heat-like' contribution can actually become a
small faction of total temperature response.  For most
materials, however, thermoelectric coupling is small (γC and
γL only slightly greater than 1) and the 'heat-like' component
dominates the temperature response, as expected

When corrections are large
From the above discussion it appears that no special

precautions are required when interpreting diffusivity
measurements when both types of thermoelectric coupling are
small (i.e., when γC and γL are only slightly greater than 1)
When only one type of coupling is strong (i.e. γC>>1 or γL
>>1, but not both) the actual diffusivity values will be given
by the uncoupled values (de or dq) except when these are
similar in magnitude.  In other cases, the full roots given by
Eq. 14 are required.

Heat Temperature



Fig. 4 illustrates one kind of error which can occur in
extreme cases.  Here, diagonal coefficients corresponding
approximately to Pd have been combined with hypothetical
off-diagonal coefficients to give γC~2 and γL~2 and the results
of a flash diffusivity experiment on this hypothetical metal
was calculated.  While the total time dependence of the back
face looks qualitatively similar to the uncoupled case (which
has the shape of either of the individual contributions labeled
'heat-like' and 'electric-like'), it is acually much more complex
depending on three new materials parameter (de,, γC, and γL)
in addition to the uncoupled thermal diffusivity (dq).

This example is not intended to represent realistic
properties, but it illustrates some difficulties which may be
encountered.  Ordinarily, a key advantage of diffusivity
measurements is that only a single number (such as t0.5, the
time required for the backface temperature to reach 1/2 of its'
final value) is required.  Times can be determined with great

precision and accuracy, so a
simple measurement of times
can yield important
experimental information.

In the case of thermoelectric
coupling, four materials
parameters (two diffusivities
and two coupling parameters)
determine the time dependence
of the temperature of the
backface temperature and more
careful analysis is required to
extract the material properties.
Indeed, when other corrections
such as heat loss and finite
duration of the flash are
considered (as has been done
for the uncoupled problem [3]),
extraction of reliable values for
materials properites becomes
problematic.

Conclusion
Characterization of

electrical and thermal
properties of materials using

dynamic methods (i.e. using time dependent
external perturbations) is more complex in
materials with strong thermelectric effects because
the response generally exhibits both 'electric-like'
and 'heat-like' components, each with
characteristic diffussion constants modified
compared to the uncoupled diffusion constants.  In
most materials thermoelectric coupling will be
negligible but it would be of interest to confirm
the effects described in this paper by analysis of
high-precision diffusivity experiments on, for
example, metallic thermocouple .materials where
the coupling effects may be within experimental
resolution.
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Figure 4: Temperature vs. time response for a flash diffusivity
measurement on a hypothetical metal 1 mm thick with γC~2 and γL~2.
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Figure 3:  Amplitude  of the 'heat-like' response as a function of the diffusion constants
neglecting coupling (de and dq) and the magnitude of the coupling (γC and γL).
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