Abstract Meeting of American Physical Society 26-30 March 1984, Detroit, Michigan

Physics and Astronomy Classification Scheme Number 74.10+V

Suggested title of session in which paper should be placed.
Ternary Superconducting Materials

Pressure Induced Re-entrant Superconductivity in Antiferromagnetic Tm₂Fe₃Si₅. C. B. VINING, Ames Lab.-USDOE* and Iowa State U.—Re-entrant superconductivity is detected in well-characterized samples of Tm₂Fe₃Si₅ by ac susceptibility measurements under applied pressure. Above 2 kbar the upper superconducting transition temperature rapidly rises $(T_{cl}/dp = 0.47 \text{ K/kbar}) \text{ from } 1.1 \text{ K}$ reaching a maximum of 3.1 K near 8.5 kbar and finally is rapidly depressed $(dT_{c1}/dp = -0.17 \text{ K/kbar})$ to below 1.3 K by 21 kbar. Superconductivity is destroyed by the onset of antiferromagnetic order near $T_{
m N}$ = 1.1 K for all pressures. T_N is weakly enhanced by pressure $(dT_N/dp$ = 0.01 K/kbar). Below 2 kbar and above 21 kbar of applied pressure bulk superconductivity is not observed. The pressure dependence of T_{cl} is described quantitatively by a pressure dependent pairbreaking parameter arising from the interaction between conduction electrons and a local spin with a coupling constant J. $T_{\rm cmax} - T_{\rm c.l.}$ is proportional to J^2 with $J = J_0 - J_1$ where J_0 and J_1 are the direct and exchange integrals, which results in a maximum in T_c where $J_0 = J_1$. *Operated for the U.S. Department of Energy by Iowa State University under contract No. W-7405-Eng-82 and supported by the Director for Energy Research, Office of Basic Energy Sciences.

() Prefer Poster Session

(X) Prefer Standard Session

() No preference

Cronin B. Vining
Ames Laboratory
Iowa State University,
Ames, Iowa 50011