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ABSTRACT 
 

 We have re-examined solid-state thermionic emission cooling from first principles and 
report two key results.  First, electrical and heat currents over a semiconductor – semiconductor 
thermionic barrier are determined by the chemical potential measured from the conduction band 
edge, not the energy band offset between the two materials as is sometimes assumed.  Second, 
we show the upper limit to the performance of thermionic emission cooling is equivalent to the 
performance of an optimized thermoelectric device made from the same material.  An overview 
of this theory will be presented and instrumentation being developed to experimentally verify the 
theory will be discussed. 
 
INTRODUCTION 
 
 Solid state thermionic emission cooling has received interest in the last decade as a possible 
alternative to standard thermoelectric cooling.  It has been proposed that greater cooling power 
may be achieved with thermionic emission cooling [1,2].  Thermionic emission coolers 
comprised completely of semiconducting materials, such as in the diagram of figure 1, are also 

Figure 1. Schematic and block diagram of a thermionic emission cooler.  The arrows show the 
direction of electron flow causing Peltier cooling on the left and Peltier heating on the right. 
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desirable because they can be monolithically integrated with solid state devices that require 
temperature control.  The basic principle of cooling in thermionic emission devices, modeled in 
figure 1, is the transport of heat utilizing the Peltier effect.   
 The purpose of this paper is to present a first principles derivation of the electronic 
contributions to the cooling power for a semiconductor thermionic device and from this to 
determine the maximum cooling possible for both the ballistic and diffusive limits.   
 
FIRST PRINCIPLES DERIVATION 
 
 The electrical current density, JE, and heat current density, JQ, over a semiconductor-
semiconductor heterojunction barrier are derived from statistical mechanics [3]: 
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where f(p) is the Fermi Dirac distribution function, g(p) is the density of states, q is the 
elementary charge, vx is the electron velocity in the x-direction, ε(p) is the electron kinetic energy 
measured from the conduction band edge, εF is the Fermi level measured from the conduction 
band edge, and px

free is the momentum in the x-direction necessary to surmount the barrier.  If a 
large barrier height is considered the results of these integrals are the historical Richardson 
equation for the electrical current density [4] and its equivalent for the heat current density.  But, 
the Richardson approximation is the first term in a series expansion, so any arbitrary barrier 
height can be considered if all terms in the series are kept.  This will also allow for fast numerical 
calculations at any barrier height.  The complete series solutions for these integrals are: 
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where A* is the effective Richardson constant, T is the temperature at the heterojunction, k is the 
Boltzmann constant, and µ is a chemical potential defined as the following, and is shown in 
figure 1: 
 

barrier
CF εεµ −= , (5) 

 
where barrier

Cε  is the conduction band edge of the barrier and εF is the fermi level measured in the 

emitter.  This solution is valid for negative or zero µ.  We define µ outside the barrier to avoid 
problems with ballistic transport for which a chemical potential cannot be defined in the barrier.  
Equation 5 agrees with Wu and Yang’s more detailed development of electrical current over a 
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semiconductor heterojunction [5].  Our derivation extends the model to include the heat current 
density.  Equation 5 is the correct barrier height for a semiconductor – semiconductor 
heterojunction and we have not seen it applied in the calculations of thermoelectric energy 
conversion.  A chemical potential is defined as the energy necessary to add a particle to a system.  
Thus, the chemical potential governs the electrical and heat currents across a barrier as opposed 
to the energy difference between the adjacent conduction band edges, as is often assumed.   
 In order to apply equations 3 and 4 to thermionic emission cooling we consider ballistic 
transport across the barrier with an applied voltage and do not neglect the reverse current 
densities.  For a thermionic emission cooler, the total current densities are: 
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where TE is the temperature at the emitter-barrier junction, TC is the temperature at the barrier-
collector junction, and V is the voltage across the barrier as shown in figure 1. To proceed 
analytically, we consider only the n = 1 term of equations 6 and 7 and combine the equations and 
eliminate the applied voltage.  Thus, the heat current density removed from the emitter junction 
in terms of the electrical current density through the device is: 
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The first term is the Peltier effect where Π is the Peltier coefficient, the second looks like a 
Thomson effect, and the third is the electronic contribution to the thermal conductivity, κe.  ∆T is 
the temperature difference between the emitter and collector and is positive if the collector is at a 
higher temperature.  The close correspondence between equation 8 and conventional 
thermoelectric theory is reassuring. 
 
TOTAL HEAT TRANSPORT 
 
 To examine a thermionic emission cooler, lattice effects are added directly into equation 8.  
In the ballistic limit, only lattice thermal conduction must be considered and the heat current 
density is: 
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where κ is the lattice thermal conductivity of the barrier and d is the barrier width.  In the 
diffusive limit joule heating must also be considered.  The solution to the one dimensional heat 
transport equation for electrical current through a resistive material with a temperature difference 
between the ends shows that half of the joule heat returns to the cold end [6].  Thus, in the 
diffusive limit the heat current density is: 
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where σ is the electrical conductivity of the barrier. Equation 10 is exactly the equation for heat 
transport through bulk thermoelectric devices.  This shows that a thermionic emission cooler in 
the diffusive limit will behave the same as a bulk thermoelectric device [1].  This provides a 
simple way of comparing a thermionic structure to a thermoelectric structure of the same 
material. 
 
DEVICE OPTIMIZATION 
 
 We examine the cooling ability of a thermionic emission cooler by optimizing the maximum 
temperature difference that can be achieved.  We consider the full series for the electrical and 
heat current densities and solve numerically.  We use parameters for an InGaAs barrier because 
the InP-InGaAs family is an important semiconductor family in which many devices would 
benefit from integrated cooling.  The mobility is taken to be 8000 cm2-V/sec.  The lattice thermal 
conductivity is taken to be 5 W/K-cm, which corresponds to the bulk value. There are two 
variables that can be optimized: the chemical potential and the barrier width.  
 Figure 2 shows the maximum temperature difference achievable as a function of the 
chemical potential for ballistic transport across a .2 micron barrier.  The dashed line assumes 
saturation of the electrical current.  The solid line is determined by limiting the electrical current 
density to be less than or equal to 100kA/cm2.  This limit is chosen because above this current 
density, joule heating in the contacts will be a significant issue [7] and electromigration may also 
threaten device stability [8].  With this self-imposed limit, the optimum chemical potential is 
approximately ( –1.5kT/q ). 
 Figure 3 shows the maximum temperature difference as a function of the barrier width in 
both the ballistic and diffusive limits for a chemical potential of ( –1.5kT/q ).  Clearly there is an 
advantage to the cooling for the ballistic limit if relatively large barrier widths can be used.  
Using a mobility of 8000 cm2-V/sec, the mean free path is only .1 micron.  In this purely ballistic 
limit, no more than 2 degrees of cooling is possible, whereas a thick device in the diffusive 
regime could provide about 4.5 degress of cooling.  The conclusion of this is two-fold.  First, a 
single barrier ballistic InGaAs thermionic device will not be able to achieve better cooling than a 
standard InGaAs thermoelectric device.  Second, between the ballistic and diffusive limits, it 
may be possible to achieve cooling greater than either limit.  Because InGaAs is a good 
representation of the important thermoelectric parameters for ternary III-V materials, we expect 
similar results for other III-V material systems. 
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CONCLUSIONS 
 
 We provide analytical solutions for the electrical and heat current densities over a 
heterojunction barrier that allow for fast numerical calculations for any chemical potential.  The 
Peltier coefficient for a semiconductor – semiconductor heterojunction boundary must be defined 

Figure 3. The maximum temperature difference as a function of the barrier width for an InGaAs 
device with µ = -1.5kT/q, in both the ballistic limit (on the left) and diffusive limit (on the right).
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Figure 2.  Maximum temperature difference of a ballistic InGaAs thermionic emission cooler as 
a function of the chemical potential for unlimited current (dotted line) and current limited to 
100kA/cm2 (solid line). 
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using the chemical potential in equation 5 and shown in figure 1.  The optimum chemical 
potential for thermionic emission cooling should be determined from a physically reasonable 
electrical saturation current density.  Maximum cooling may occur between the ballistic and 
diffusive limits (see figure 3 for barrier widths from .5µm to 1µm) of a thermionic device and 
more investigation in this area is necessary.   
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