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The thermal conductivities of micron-thick epitaxial layers of dilute Si1−xGex alloys, 2× 10−4 <
x < 0.01 , are measured in the temperature range 297 < T < 550 K using time-domain thermore-
flectance. These new data are used to test competing models for the strength of phonon scattering
by heavy impurity atoms. We find that the room temperature thermal conductivity of dilute SiGe
alloys is adequately described by Abeles’s theory of 1963. The change in the thermal conductivity
with temperature, however, is less than predicted.

The thermal conductivity of a crystalline solid-solution
is significantly smaller than the thermal conductivity
of a pure crystals because high-frequency phonons are
strongly scattered by deviations from the perfect peri-
odicity of the crystal.1 This property of semiconductor
alloys has been applied for nearly 50 years in improving
the efficiency of semiconductors used in thermoelectric
cooling, heating, and power generation.2 In modern high-
speed and high-power electronics, however, the reduc-
tions in thermal conductivity created by mass-disorder
are detrimental to the operation of the device: lattice
matched and strained epitaxial alloys are essential for
engineering the electronic structure of electronic devices
but the small thermal conductivity of the alloys aggra-
vates problems of thermal management.

The first theories of phonon scattering by point-defects
are based on perturbation theory3 and the strength of the
phonon scattering was shown to scale with the square
of the difference between the mass of the substitutional
atom and the average atomic mass. The dimensionless
scattering strength Γ1 is then

Γ1 =
∑

i

ci

(
mi − m̄

m̄

)2

, (1)

where ci is the fractional concentration of the ith species,
mi is the atomic mass of the ith species, and m̄ is the
average atomic mass. For Si, the naturally occurring
isotope mixture gives Γ1 = 2.0× 10−4.

Since Eq. 1 was originally derived for weak scattering
in the long wavelength limit, the reliability of this equa-
tion for describing phonon scattering by a heavy impurity
atom can certainly be questioned. For example, the Ge
atomic mass is 2.6 times the average atomic mass of the
Si lattice and term in the parenthesis of Eq. 1 is signifi-
cantly larger than unity; the Ge content of a dilute SiGe
alloy increases the scattering strength by ∆Γ1 = 2.5x.
Exact theoretical treatments of the lattice dynamics of
one-dimensional chains4 and three-dimensional lattices5
support the use of Eq. 1 in the long wavelength, and
while some of the experiments show discrepancies, in
most cases, the low temperature thermal conductivities

of alkali halides doped with heavy impurity atoms5,6 typ-
ically agree quite well with modeling based on Eq. 1.

The main concern of this paper is the thermal con-
ductivity of substitutional alloys near room temperature
and above where most of the phonon modes of the crys-
tal are thermally excited; therefore, we must consider
scattering of all wavelengths of phonons, not only the
long-wavelength limit. (Even for Si with a relatively high
Debye temperature of 645 K, the heat capacity at room
temperature is 80% of the classical limit.) An alternative
to Eq. 1 has been discussed and applied in the analysis
of thermal conductivity reductions created by heavy im-
purity atoms.7–9

Γ2 =
∑

i

ci

(
mi − m̄

mi

)2

. (2)

In this case, the mass difference is normalized by the
impurity mass mi rather than the average mass m̄ and
the Ge content of a dilute SiGe increases the scatter-
ing strength by ∆Γ2 = 0.38x. For heavy impurity
atoms, Eqs. 1 and 2 give very different predictions for
the strength of the phonon scattering.

Our new contribution to this relatively mature topic is
enabled by recent advances in materials and experimental
techniques. Isotopically purified Si has been produced as
bulk single crystals and epitaxial layers and a consensus
has emerged10–12 on the thermal resistance created by
the naturally occurring isotope disorder of Si. Since the
perturbation analysis for phonon scattering should have
the greatest validity when the mass difference are small,
these new data provide a rigorous constraint of the the-
ory in the limit of weak scattering. The second advance is
our development of an accurate technique for measuring
the thermal conductivity of micron-thick layers of high
thermal conductivity materials. In most cases, homoge-
neous single crystals of alloys are difficult to obtain by
the methods employed in bulk crystal growth. Our new
measurement technique enables us to study homogeneous
epitaxial layers of semiconductor alloys grown by chem-
ical vapor deposition or molecular beam epitaxy. The
technique is based on time-domain thermoreflectance13,14
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FIG. 1: Thermal conductivity of epitaxial SiGe layers as a
function of temperature. The data points are labelled by the
Ge concentration in atomic percent. Data for 0.028% and
0.13% are from Ref. 12. The error bars reflect an experimental
uncertainty of ±5% in thermal conductivity. The dashed line
is the thermal conductivity of pure Si from Ref. 16.

measurements of heat transport but we modify the anal-
ysis of the data to take advantage of the extra infor-
mation contained in the out-of-phase component of the
thermoreflectance signal. The details of our technique
and methods for data analysis are described in Refs. 12
and 15.

We previously reported data for two compositions of
highly dilute Si1−xGex alloys with x = 2.8 × 10−4 and
x = 1.3 × 10−3 as a part of our study of the thermal
conductivity of isotopically purified Si.12 The new data
reported here are for compositions x = 2.0 × 10−4 and
x = 8.0× 10−4 at room temperature and x = 2.5× 10−3

and x = 0.010 in the temperature range 297 < T <
550 K. The new epitaxial layers of Si1−xGex alloys were
grown at the Seitz Materials Research Laboratory using
disilane and digermane precursors at a growth temper-
ature of 1073 K; the thickness of the x = 0.010 layers
is 580 nm; the thickness of the other layers is 1.3 µm.
The Ge content of the x = 0.010 sample was measured
by Rutherford backscattering spectrometry; the compo-
sition of the lower concentration samples were charac-
terized to an accuracy of ±15% by secondary ion mass
spectrometry (SIMS) using the x = 0.010 sample as a
standard.
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FIG. 2: Increase in the thermal resistance ∆W generated by
mass-disorder phonon scattering in Si at 297 K (solid sym-
bols) and 550 K (open symbols). In the upper figure (a), the
dimensionless strength of phonon scattering is evaluated us-
ing Eq. 1; the bottom figure (b) uses Eq. 2. Selected points
for dilute Ge alloys (filled and open circles) are labeled by
the Ge concentration in atomic percent; the six data points
labelled “Erofeev” are for alloys with 5, 8.5, and 15% Ge con-
centrations from Ref. 17. The solid square is for the thermal
resistance created by the naturally occurring isotope disorder
in Si from Ref. 11. The data for 297 K and 550 K nearly over-
lap for Ge conentrations of 0.028, 0.13, 0.25, and 1.0 atomic
percent. The solid and dashed lines are the evaluation of
Abeles’s theory, see Ref. 18, for 297 and 550 K respectively
with α = 2.

The thermal conductivity of Si1−xGex is plotted as a
function of temperature and composition in Fig. 1. The
thermal conductivity of Si is decreased by a factor of ≈ 2
for a Ge concentration of 0.13 atomic percent. The tem-
perature dependence of the data becomes progressively
less pronounced with increasing Ge content.

In Fig. 2, we plot the increase in thermal resistance
∆W of Si created by mass-disorder using the measured
thermal conductivity of 28Si from Ref. 11 as the baseline.
The x-axis of the upper and lower plots differ: for the
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upper plot, the x-axis is evaluated using Eq. 1 and for
the lower plot, the x-axis is evalulated using Eq. 2. As
we have noted previously12, the use of Eq. 1 to describe
the phonon scattering strength Γ1 produces a smooth
connection between the the thermal resistance created
by isotope disorder and the thermal resistance created
by low concentrations of Ge. If we instead use Eq. 2
and plot the data as a function of Γ2, the thermal resis-
tance increases sharply for low concentrations of Ge, see
Fig. 2b.

The solid and dashed lines are our evaluation of the
theory developed by Abeles18 in 1963 to describe the
high temperature thermal conductivity of Si1−xGex al-
loys with much higher concentrations Ge, x > 0.2. Since
we are mostly interested in low Ge concentrations, we do
not include the virtual crystal approximations of the orig-
inal theory that are needed to describe the entire range
0 < x < 1. The theory has one free parameter: α, the
ratio of the normal to umklapp three-phonon relaxation
rates. In the original analysis, Abeles found α = 2.5.
We find that α = 2.0 produces a better match between
theory and data at low concentrations, see Fig. 2a. The
agreement between theory and experiment is remarkably
good when the strength of the mass-disorder scattering

is calculated using Eq. 1, see Fig. 2a.

On close inspection however, we note that the theory
over-predicts the temperature dependence of the ther-
mal resistance. For example, the thermal resistance with
x = 0.01 is the same at T = 297 and T = 500 K to
within the uncertainties of our measurement while the
theory predicts an increase in the thermal resistance of a
factor of (550/297)0.5 = 1.36. Presumably, this discrep-
ancy results from the simplifications used in developing
the theory18—e.g., the use of the Debye model model to
describe the lattice dynamics. More sophisticated mod-
els of the lattice dynamics will be required to make a
truly quantitative theory of the thermal conductivity of
semiconductor alloys.
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